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A closed-form expression is obtained for the transient acoustic pressure in a borehole due to the
action of a volume injection (acoustic monopole) source in another borehole in a typical
cross-well seismic setting with a homogeneous isotropic solid formation. For the radiation of the
elastic wavefield quantities into the formation, the Kirchhoff-Huygens infegral representation is
used. The acoustic pressure on the axis of the receiving borehole is evaluated through a suitable
application of the fluid/solid acoustic reciprocity theorem. At the relatively low frequencies
involved, the acoustic wave motion inside a fluid-filled borehole, which may be surrounded by a
~ structure of perfectly bonded circularly cylindrical solid shells (casing), is dominated by tube
waves. The excitation and propa.gation properties of the tube wave are modeled by regarding
the borehole as an acoustic waveguide with a compliant inner wall. The corresponding elastic
wavefield quantities at the outer borehole wall determine the surface sources. The entire
analysis is carried out via an appropriate combination of a Laplace transformation with respect
to time and Fourier transformations with respect to space. The closed-form representation for
the received transient acoustic pressure is found by inspection. Various physical phenomena are
described by the resulting expression, including post-critical conical waves for slow formations,
in which the tube-wave speed exceeds the shear-wave speed in the formation, and tunneling-like

phenomena for proximate boreholes in fast formations.

INTRODUCTION

Acoustic signals, as measured in cross-hole seismic exper-
iments involving volume injection sources and/or acoustic
pressure receivers, contain strong tube-wave related phenom-
ena. This was first recognized by White and Sengbush (1963).
For example, in so-called slow formations where the tube-wave
speed exceeds tlre shear-wave speed in the solid formation, a
tube wave propagating along a borehole excites strong coni-
cal shear-waves in the formation. De Bruin and Huizer (1992)
have presented perhaps the most striking experimental obser-
vations of this phenomenon.

To model the acoustic wave motion inside a fluid-filled
borehole, the acoustic radiation emanating from such a
borehole and the full cross-hole tramsfer of acoustic sig-
nals, a wide variety of modeling methods has been em-
ployed. Here, we mention the far-field asymptotic meth-
ods to determine the wavefield radiated into the formation
— Lee and Balch (1982) for fast formations, and Mered-
ith (1990) for both fast and slow formations; the equiva-
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lent seismic source methods to determine the wavefield radi-
ated into the formation — Ben Menahem and Kostek (1990)
for fast formations and Kurkjian etal. (1992) for both
fast and slow formations; the finite difference methods —
Track and Daube (1992) for the full cross-hole acoustic sig-
nal transfer and Cheng et al. (1992) for the radiated wave-
field in slow and fast formations; and the hybrid space-time-
domain methods, in which the final expression is assembled
out of the sclutions to subproblems — White and Seng-
bush (1963) for the wavefield radiated into a fast formation
and De Hoop et al. (1993) for the full cross-hole transfer
of acoustic signals across slow and fast formations. As this
brief overview does no justice to many other valuable contri-
butions, we refer to the De Hoop et al. (1993) for a more
detailed description of the literature.

In this paper, we present a method by which the transfer
of transient tube-wave signals in cross-borehole experiments
can completely be calculated in closed form. The correspond-
ing space-time-domain received acoustic pressure follows by
inspection. We perform the analysis analysis in the spectral
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domain via an appropriate combination of a Laplace trans-
formation with respect to time and Fourier transformations
with respect to the spatial coordinates. In doing so, we pro-
vide a unified short-cut with respect to the method employed
by De Hoop et al. (1993).

DESCRIPTION OF THE CONFIGURATION AND
FORMULATION OF THE PROBLEM

We investigate theoretically the signal transfer in a configu-
ration consisting of two parallel, circularly cylindrical, fluid-
filled boreholes embedded in a perfectly elastic, homogeneous,
isotropic solid formation. To specify the position in the config-
uration, we employ the coordinates {z1, 2,23} with respect
to a fixed, orthogonal, Cartesian frame of reference, with the
origin O and the three mutually perpendicular base vectors
{4;,25,25} of unit length each. In the indicated order, the base
vectors form a right-handed system. In accordance with the
geophysical convention, 1, points vertically downwards. The
subscript notation for Cartesian vectors and tensors is used.
Lowercase Latin subscripts are used for this purpose; they
are to be assigned the values 1, 2 and 3. Lowercase Greek
subscripts are used to indicate the horizontal components of
the Cartesian vectors and tensors; they are to be assigned the
values 1 and 2. For the vertical component the subscript 3 is
then written explicitly. To all repeated subscripts, the sum-
mation convention applies. The time coordinate is denoted by
t. Partial differentiation with respect to zp is denoted by 8p;
0O: is a reserved symbol denoting partial differentiation with
respect to time. Integration with respect to time is denoted
by the symbol I;.

At the instant ¢ = 0 a point source of volume injection,
located at z = z° on the axis of the source borehole, starts to
generate the acoustic wave motion, which is initially at rest.
An acoustic pressure point receiver located at £ = 2™ on the
axis of the receiving borehole measures the transferred acous-
tic signal. The domains occupied by the fluid columns inside
the source and receiving boreholes are denoted as B and B,
while b5, and Qg denote the pertaining radii and cross-
sectional areas, respectively. In between the fluid columns
and the solid formation a finite system of concentric circu-
larly cylindrical shells, representing casing, cementing, etc,

may be present. The domains occupied by the source and

receiving holes, including these shells, are denoted as B; and
B}, while 53,5 and Q% ; denote the pertaining radii and cross-
sectional areas, respectively. The different layers in the shell
structure are assumed to be perfectly bonded to one another
and to the solid formation. The fluid/solid interfaces in the
source and receiving holes are denoted as 9B and 3B3, re-
spectively; the interfaces between the outermost shells of the
source and receiving holes and the formation are denoted as
9B% and 9B}, respectively. The unit vector v is oriented
along the outward normal to the interfaces i.e., into the for-
mation. Further, L5 and Lg are used to indicate the borehole
axes of the source and receiving boreholes, respectively. The
support of the homogeneous formation outside the boreholes
is denoted as F.

The vector (2™ — z°) has the Cartesian components
(d,0,2), in which d and z are the horizontal and vertical off-
sets of the receiver with respect to the source, respectively.
Further, we employ the spherical polar coordinates R and 8,
where d = Rsin(d) and z = Rcos(d), in which 4 is the angle
between the vector (z — £%) and the vertical.

The linearized equation of motion and the deformation
rate equation governing the acoustic wave motion in the bore-

hole fluid in the presence of a point source of volume injection
are given by

ka -+ pf at‘l.l)k = 0,

Orwx + &7 0p = Q(8)8(z — =°),

(1a)
(1b)

in which p is the acoustic pressure (Pa), wrm is the particle
velocity (m/s), p’ is the volume density of mass (kg/m®), x*
is the compressibility (Pa™") and Q = Q(t) is the time-rate
of volume injection (m®s~!) of the point source. The lin-
earized source-free equation of motion and the deformation
rate equation governing the wave motion in the source-free
solid are given by

(22)
(2b)

—AkmpqOmTpg + p 0ok = 0,

A,;jmkam'vk —_ Siquatqu =0,

in which 7pq is the dynamic stress (Pa), vk is the particle veloc-
ity (m/s), p° is the volume density of mass (kg/m®) and Sijpq
is the compliance (Pa™?). Further, Aijpg = (8ipbjq+8iq6;p)/2
is the completely symmetric unit tensor of rank 4 and §;; is
the Kronecker unit tensor of rank 2. The compliance is the
inverse of the stiffness Cijpq (Pa), Le., SijpeCrokm = Aijim.
For an isotropic solid the stiffness is given by

Cijpg = Abijbpq + 2plijpg, (3)

where A and g (Pa) denote the Lamé coefficients.

Our method of analysis involves the use of a unilateral
Laplace transformation with respect to time and a Fourier
transformation of the Radon type with respect to the spatial
coordinates. For any wavefield quantity ¥ and for any ho-
mogeneous subdomain P of the configuration with a smooth
boundary @D, we have

exp(—st)¥(z,t) dt (4)

and

¥(e,s)= / exp(isammm)lif(g_,s)(iw

2€D

(5)

in which s is taken real and positive, and o € IR® Then, for
vanishing initial conditions we have 8, — s and

/ exp(isamm)dn ¥ dV

2€D

= —isa, ¥ + / W exp(isam@m)nn dA, (6)

£€OD

where the unit vector n is oriented along the outward normal
to 8D, For z € D we inversely have

$

@g,s):(i—;)s / exp(—isamzm)¥(a, s)dV. (7)

aclR®



THE WAVEFIELD RADIATED INTO THE
FORMATION

Upon applying Eq (6) to Eq (2), with D =
0B% UOBY and nm = —vm, we obtain

F, 0D =

. - 5 ~ wo8L | omt
18D kmpq@tmTpg + p 80k = fr, ° + fi, 7, (8a)
o8t

) . . ~ 88
~18Qijnk@n ¥k = 8SijpaTpq = hy; ° + hy; ©. (8b)

where the spectral-domain surface force sources and sources
of deformation rate are given by

887 . N '
f, = / exp(18QmTm)AknpgTpevn dA  (9)
-"EeaB.‘S'.;R
and
~oB¥ |
ki SR = / exp(isamTm ) AijnrOrtn d4, (10)
£EaBS-*-;R

respectively. Solving Eq (8) leads to

. ~ et  ent
Ur = Gr(dy ° + G ) (11a)

~ + - +
Fpg = —Cagis[ici®; + s (1 ° + Ry ), (11b)

in which the notional surface sources and Green’s tensor are
given by

o8t s -9t . ~8BT
g, O = F(fk SRy kapqzamhpqs’R) (12)
and ‘ 1 .
Grk = ?Gssrk Ead Qrak(Gp - Gs), (13)
s

respectively, with

(14)

in which ¢p and c¢s denote the compressional and shear
wavespeeds, respectively,

2 -2 —2\—1
Gpis =3 (amam + CP;S) )

THE RECEIVED ACOUSTIC PRESSURE

To derive an expression for the acoustic pressure on the
axis of the receiving hole, we employ the reciprocity theo-
rem for acoustic wavefields in fluid/solid configurations (cf.
De Hoop (1990)). In the reciprocity relation two acoustic
states A and B occur. The surface interaction integrals relat-
ing these two states for the solid and for the fluid are denoted
as

T°(A, B) = Aijpg / [ =7 + Frgdi Jv;dA,  (15a)
z€oB};

17(4,B) = &; / [p%07 — p7af Jv; d4, (15b)

z€8BL

respectively. As state A we take the total wavefield in the
receiving situation, and we neglect multiple scattering be-
tween the boreholes. The total wavefield in the formation
{#q, 9% }, is written as the linear superposition of an incident
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wavefield {75, 9} } and a scattered wavefield {755, 9°}. The
corresponding total wavefield inside the fluid-filled receiving
borehole is {p”, @ }. If the receiving borehole were absent,
the incident wavefield would be the total wavefield in the for-
mation. As state B, an auxiliary state, we take the acous-
tic wavefield as it would be generated by a point source of
volume injection located on the axis of the receiving borehole
where we want to evaluate the received acoustic pressure. The
wavefield quantities associated with this auxiliary state at the
inside and the outside of the fluid solid boundary boundary
9By, are denoted as {p~, wr} and {iF, 7py}, respectively. In
view of the superposition principle Eq (152) leads to
Z°(T, R) = I°(in, R) + Z°(sc, R). (16)
Both the scattered and the auxiliary wavefields are source-free
in the formation and satisfy the causality condition at infin-
ity (outgoing waves). Application of the reciprocity relation
relating these two states to the domain outside 8B}, yields

A7)

In view of the reciprocity of the elastostatic fields in the
annular region in between OBy and 0B}, in both states T
and R, and the continuity of the radial traction and the ra-
dial particle velocity across the interfaces, we further have
I5(T,R) —~I7(T,R) = 0. Since ¢® = §(z — ™), the reci-
procity relation applied to the fluid domain yields

Z%(sc,R) =0.

I'(T,R) = / P77 AV =7 (2"). (18)

Bg

Upon combining Egs (16)-(18) we arrive at

7(z") = Z°(in, R) = Aijpq / (~#06F 4 #2430, dA.
zeoB}
) ‘ (19)
Now, we use Eq (7) to express ;" and fpg at the wall of the

recelving borehole in terms of #{" and 7;. Interchanging the
order of integration then leads to

3
7= () /exp(—z'samx::wv. (20)
a€lR3

in which we have defined the spectral-domain acoustic pres-
sure at the receiver as

() = / explisem(@’h — 2m)]Aispg
z€aB}

insr AR ~inq
X [—Fpg B + g ¥ lu; dA.

(21)

Next, we use the shift invariance of the auxiliary state in the
vertical direction, viz.,

(ﬁ _ER);

{07, fogHz, 27) = {37, 72 (22)

and the symmetry properties
Aiquﬁ?l/jlzm_zﬁ = A,’qu’f)?lljlxﬁ_zm, (23a)
Dispafpatil, _,n = =Dijpatogti|,p_, ~ (23b)
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to rewrite Eq (21) as

. ﬁT(QR) _( h R ~m + fk ~m
in which the surface force source and source of deforma-
tion rate of the auxiliary state occur that follow from
Eqs (9) and (10), respectively. Substituting the expressions
for the incident waveﬁeld quantities which follow from Eq (11)

. ,,85 .
upon setting both §, ® =0 and h = 0 (the single scatter-
ing approximation) into Eq (24) leads to

k) exp(—zsamxm), (24)

. 813"‘ Bt .
= p RG,Jq] exp(—isameyy),

+1h§f Craish2%% exp(—isamzl),  (25)
in which + +
o8 S , ~8B
% = 5 (20

is the notional surface source of the auxiliary state. The inte-
gral representation for p* given by Eqgs (20) and (25) is exact
within the framework of the single scattering approximation.

. saBL
+ Cpgritarhpg®)

THE EXCITATION AND PROPAGATION OF
THE TUBE WAVE

In the low-frequency regime the axisymmetric wave motion in
the borehole fluid is dominated by tube waves. As Marzetta
and Schoenberg (1985) have demonstrated, the influence of
the solid shells and formation on the propagation of the tube
wave along a fluid-filled borehole surrounded by a perfectly
bonded concentric shell structure may be accounted for by
using the plane-strain elastostatic approximation for the field
in the solid. To keep the notation transparent, we drop wher-
ever possible, the indices S and R that indicate the source
and receiving holes, respectively.

To determine the acoustic wave quantities associated with
the tube-wave motion, we need the preliminary result that the
Laplace-transform-domain wavefield quantities at the compli-
ant inner borehole wall 9B~ are interrelated via the radial
wall stiffness 9 at B~ according to

sb™

'wkykiieas_ = —nw 4

zeon- (27)
In the quasi-static plane-strain approximation that we con-
sider, the wall stiffness is independent of s.

Upon applying Eq (6) to Eq (1), with D= B~, 8D = oB~
and 7, = Vm, we obtain a coupled system of algebraic equa-
tions for the spectral wavefield quantities in the fluid given by

FoB~

—isop + pl st = FPE, (28a)

—isan®n + k755 = Qexp(isamziT) +§°%, (28b)

where the spectral-domain surface force source and source of
volume injection are given by

foBT =~ / exp(isomTm) P vk dA (29)
z€0B-
and
P = / exp(180mTm ) Wn Un dA, (30)
zE8B~ )

respectively. In App A it is shown that in the low-frequency
regime, we may replace 3, f,fB " and §°®” by approximate ex-
pressions involving the vertical Fourier transform of the acous-
tic pressure on the borehole axis only (cf Eq (A.3)). As a
consequence, after elimination of @, from Eq (28) we obtain

F=Qr ca(scs) T (ad +¢57)” (31)

The poles in Eq (31) represent up- and downgoing tube waves
propagating with a tube-wave speed

2c%pf —1/z
s = Cf (1-}- ;p >
w

-1/2

1 3 S;R
exp(isamz,

(32)

where ¢y = (p/&7)
fluid.

denotes the acoustic wavespeed in the

THE LOW-FREQUENCY-REGIME EXPRESSION
FOR THE RECEIVED ACOUSTIC PRESSURE

In the low-frequency regime the radial stiffness at the in-
ner borehole wall and the transfer of the acoustic wave-
field quantities across the shell structure can be determined
using a quasi-static plane-strain recurrence scheme (cf De
Hoop et al. (1993)). Both the resulting traction and the par-
ticle velocity at 9B are oriented along v and are given by

AmjpgViTpe = Fomulu

at BT, (33)

P = 51:57}»: = '—Sb+ fskrc”rc

2w
in which 7 denotes the elastodynamic normal traction at the
outer wall. Further, the amplitude of the traction is trans-
ferred from the inner to the outer borehole wall according to

7= —T}p, (34)

where T is the elastostatic traction transfer coefficient.

In App A it is shown that the spectral-domain surface
sources of deformation rate and the notional surface sources
may be approximated by

5% Qf P
h” =S TS,R
Qg, R

(5z_7 - 8i36;3), (35a)

2
) _TSRQSRS ~SR(
Qs;z

in which #° and §%, follow from Eq (31), with Qs =
Q R = 1.

With Eq (35), Eq (25) is now, in principle, amenable to
transformation back to the space-time domain. Before do-
ing this, we cast the expression in a more transparent form.
Considering the generic case in which c¢zs and csr are differ-
ent, we substitute Egs (13), (35a) and (35b) into Eq (25) and
contract over the repeated subscripts. The resulting expres-
sion can be simplified with the aid of several straightforward
algebraic manipulations. This leads to

=k ZCBSCZBR EP(CBS)
Ccps + CBR

ZCZBSCQBR ils(CBs) ol 71,5
¢ss + ¢Br

5zk — 26:36ka)tay, (35b)

@ and

- EP(CBR)]

CBs — CBR

(CBR)]

Css — CBR

+45™H(Gp — Gs) exp(isamz;‘;)} , (36)




in which et £ g
- A Q0% psp
E = 2QsTsT, 2R PsPR 37
QsTs RQ;Q; s (37)
while
z _ 24ps & 2, 2y-1 . s
pis(ce) = o Gpis(as +cg) 7 exp(isomn,) (38)

denote compressional and shear constituents and

2 2
) and As = c3° (5;2 - ) (39)
Cs

denote their respective amplitudes.

THE SPACE-TIME-DOMAIN ACOUSTIC WAVE
MOTION

In this section, we perform the inverse Fourier transforma-
tion on T (cf. Eq (20)) by inspection. From Eq (14)
we infer that the Laplace-transform-domain counterpart of
s Gps explisames,) is given by

—1A _1exp(—sR/cp,
s IGP;s(d,O,Z,S)=3 I_Ii“gr‘R/_Pﬁa (40)
Its space-time-domaih counterpart is
H(t—tp;s)
Gp, 0 = 41
I P,S(dy ,Z,t) ATR ; ( )

where H denotes the Heaviside step function and ¢ = R/cp
" and ts = R/cs are the traveltimes of the compressional and
shear waves, respectively.

In view of Eqs (38) and (40) we write hp,s as a convolu-
tion along a borehole axis of a vertical tube-wave propagation
term and a spherical cross-hole propagation term according
to

oo

ﬁP;S(CE) = Apis / GP;S (d,0,2—¢) exP(“‘SlCI/CB) d¢

{=m—co
- (42)

= Aps[Xris(z,¢8) + Xpis(—2,c8)],

in which

Rris (22, c5) = / Gris(d,0,%2 — () exp(—s(/ca)d(  (43)
{=0

form the elementary building blocks that describe the kine-
matic aspects of the compressional and shear coupling of an

up- and downgoing tube wave in one hole to the acoustic wave

motion at a single point in the other hole, or vice versa.

Below, we shall determine the space-time-domain expres-
sion for the acoustic pressure for the general situation in which
¢ps and cgr could exceed both ¢s and ¢p, which entails that
up to four (different) angles of conical refraction can occur.
To this end, we rewrite Eq (43) as

o in e [ explsr()]
Xris(Ez,c5) Cl/o 47r[d2 + (£z— 4)2]1/2 ¢, (44)
in which
7(¢) = ¢fes + [d% + (22 = )% /cpis. (45)
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Now, we cast Eq (44) in such a form that it can be recog-
nized as a one-sided Laplace transformation of a function of
time (cf Eq (4)), which — according to Lerch’s theorem —
can uniquely be identified with the space-time-domain con-
stituent xp,s. To do this, we partition the interval of in-
tegration such that = is monotonic in each subinterval and
subsequently take r as the new variable of integration. We
refer to De Hoop et al. (1993) for a detailed analysis, which
leads to

2H(t—tc)— H{t— t;;s)

an [(t = 2/cs) = & (7% — 57)]/*

for {

H(t - tP;S)

tn (6= ofea) = & (7% ~ o)

¢B > ¢p,s and

XP;S(z,CB) = z/d>COt(6c'),

otherwise,

(46)
in which fc = arccos(cp;s/cs) for cs > cp;s is related to the
angle of conical refraction ac via 6c = 7/2 — ac. In Eq (42),
the constituents xr;s(z,¢s) and xp;s(—2z,¢s) occur in pairs,
and therefore the offset is pre-critical for |2/d| < cot(fc) and
post-critical for [z/d| > cot(fc). For pre-critical offsets coni-
cal waves are absent, whereas for post-critical offsets a conical
wave precedes the pertaining body wave. The traveltime of a
conical wave is found to be

¢z > cps and

|2/d| > cot(6e). X7

te = |3|/cs + d{cps — c57)!/? {

Having determined Gp,s and xp;s, the time-domain rep-
resentation of the acoustic pressure at the receiver is obtained
by replacing s by 8;; thus yielding

t
p" =87Q(1) * gsr(2), (48)
in which * denotes a comvolution with respect to time,
while the cross-well acoustic-pressure/volume-injection-source
Green’s function is given by

f.f Q+Q+
gsa(t)=TsTR£;—€E i

R
y { 25 sChR [hP(CBS) - hP(cBR)] +4L:Gp
CBs + CBR ¢ps ~ CBR

Zczescén hs(Cas) - hS(CBR)
¢Bs+ ¢Br

|-aro},

CBs — CBR
where the compressional and shear constituents are given by

kpis(ce) = Aps(xrs(z,c8) + xr;s(—2,¢8)], (50)
The particular case in which the tube-wave speeds in the
source and receiving boreholes are equal can be treated
by considering the limit of 7 for css — csr (cf. De
Hoop et al. (1993)).
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SUMMARY

We have presented closed-form time-domain expressions for
the acoustic pressure on the axis of a receiving borehole, due
to the action of a point source of volume injection on the axis
of a source borehole, on the assumption that multiple scat-
tering effects may be omitted and that the traveltimes of the
elastic waves in the formation over distances of the order of
the borehole diameters can be neglected.

We have carried out a major part of the analysis lead-
ing to this result in the spectral domain, so as to streamline

the mathematical framework presented in our previous paper
(De Hoop et al. (1993)).
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APPENDIX A: APPROXIMATE EXPRESSIONS |
FOR SPECTRAL QUANTITIES

In the low-frequency regime we express the acoustic pressure
inside a borehole in terms of its Taylor expansion in a cross-
sectional plane about its axis according to

#(z,s) = Po + Ols* (2 — 227 )2y — 237)/c}]
~po = p(z5", T3, 8). (A1)

To approximate the Fourier transform of $ and the surface in-
tegrals representing the spectral-domain surface sources given
by Egs (9), (10), (29) and (30), we replace the Fourier ker-
nel by the first two terms of its Taylor expansion about the
borehole axis, according to

exp(i5amTm) & exp(isamz ™) explisas(zs — £5F)]
X [L+disau(ou — i) (A2)

As the radius of a borehole is much smaller than the dis-
tance between the boreholes, this approximation amounts to
neglecting the traveltime across the borehole cross-sections.

Now, we substitute Egs (A.1) and (A.2) into Eq (5)
with ¥ = 5 and employ the identities f dA = Q~ and
Jou(z, — z3%)dA = 0, where the integrations are carried
out in a cross-sectional plane bounded by dB~. As a conse-
quence, we obtain an approximate expression for § in terms
of a vertical Fourier transform, viz.

p=Q" / exp(isam®m)po(z, s) dL. (A.3)
z€L

Next, we employ Eqs (33)—(34) to rewrite Eqs (9)-(10) ac-
cording to

~,‘¢93+ =T / exp(1sam@m )prr dA (A.4)
z€aB+t
and
ﬁ?fﬁ =T / exp(isamom)priv; dA, (A.5)
zeoBt

respectively. Finally, we substitute Eq (27) into Eq (30) and
Egs (A.1) and (A.2) into Egs (29), (30), (A.4) and (A.5) af-
ter which we employ the identities f vidé =0, § VmVn df =
7b% (§mn ~ 6mabns) and § vkvmun d€ = 0, where the integra-
tions are carried out along a cross-sectional circular bound-
ary. As a consequence, the expressions for the spectral sur-
face sources associated with the wave motion inside the fluid
reduce to o
P57 = $(6kn — Gxabns)isan, (A.6)
§% = 2psn3", (A7)
respectively, while the spectral surface sources associated with
the wave motion inside the solid formation reduce to

. +

kB+ = T‘g—:ﬁ(&cn — bk3lna)isan, (A.8)
soB+ ot s

hiy = T?{_’Pﬁ(&j — 8i3653), (A.9)

respectively. Upon substituting Eqs (A.8)—(A.9) into Eq (12)
and into Eq (26) we finally obtain the expression for the spec-
tral notional surface sources, given by Eq (35b).
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