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Summary B

The boundary-integral-equation method for computing the three-dimensional
steady flow of groundwater is developed. Starting from the basic flow
equations, a reclprocity theorem is derived from which source-type integral
representations for the flow-field quantities are obtained. Utilizing these
representations, the relevant boundary integral equations are arrived at.
Their numerical handling is dlscussed in some detail.

1. Introduction

In this paper we analyze the three-dimensional steady flow of groundwater
through piecewise homogeneous and anisotropic fluid-saturated subsoils with
the ald of the boundary-integral-equation method. To locate position in R?,
we employ the coordinates {x,,x,,x,} with respect to an orthogonal Cartesian
reference frame with origin O and three mutually perpendicular base vectors
{i1s12,15) of unit length each. Partial differentiation is denoted by 3. The
subscript notation for vectors and tensors is used and the summation
convention applies. Ocecasionally, a direct notation will be used to denote
vectors; for example, iaxkik denotes the position vector.

The flow state of the groundwater is characterized by the pressure p and
the flow velocity Vi These quantities satisfy the continuity equation [1al

atv‘ ~ QI (])

and Darcy'’s law [1b]

i\
k!

-aip - levj - -pgi - rlv (2)
where q is the volume source density of injection rate, fi the volume source
density of force, R1j the tensorial resistivity of the fluid-saturated porous
medium, p the volume density of fluidmass, and gi the local (constant)

acceleration of free fall. On each part of the surface bounding the relevant
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subsoil, either the pressure, or the normal component of the flow velocity,
or a linear combination of these has a prescribed value. Furthermore, across
an interface of discontinuity in resistivity and/or volume density of fluid-

mass, the pressure and the normal velocity are to be continuous.

2. The reciprocity theorem for steady ground-water flow

We start with deriving a reciprocity theorem that interrelates, in a specifie
way, the flow quantities of two admissible, but non-identical, ground-water
flow states (QO be denoted by the superscripts A and B, respectively) that
can occur in one and the same bounded domain in R®. To this end, we consider
the following interaction quantity between the two states: Bi(pAv? - va?).
Using (1) - (2) for the two states, we are led to the local form of the

i, 5

reciprocity theorem: ;

AB B A B A, AB AB B A
d;(pivy ~p Vi) = (Rij - Rji)vivj *lpvy - vi)gi
A B BA AB_. BA
FEVp S LYy TaP fap. (3)

Integrating (3) over a bhounded domain V in R?, and using Gauss' theorem in

the resulting left-hand side, we obtain

AB B A B A, AB A B B A
Iav(p Vi =P Vv dh ~ JV(Rij le)vivjdv + IV[(D vi - pvyeg
A B B A A B B A
+ fiv1 - f‘iv1 qQ'p +qp ldv, 4)

where 3V is the boundary of V and v, is the unit vector in the direction of

the outward normal to 3al. Equation fu) is the global form, for the domain V,
of the reciprocity theorem. The first term on the right-hand sides of (3) and
(4) is characteristic for the difference in resistivity of the media present
in the States A and B, while the remaining part represents the interaction

between the sources and the accompanying fluid-flow states.

3. Source—-type integral representations for p and vy
To obtain the source-type iﬁtegrai representation for the pressure we take in
(4): {pA,vA}-[p.vi], where p and v, apply to the actual flow state. Further,

q Gq satisfy

and v1

B
we take {p ,vil-(pcq,qu}, where p

2,v;0 = as(xx'), : (5)
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-5 o0a Gq
Bip Rjivj 0, (6)

where a is an arbitrary constant, §(x-x') the three-dimensfonal spatial unit

pulse operative at x=x', and R is the transpose of the resistivity Rij of

Ji Gq Gq

the actual configuration. The quantities p and v, ' are linearly related to

the constant a; we express this by writing [qu,qu}sa{Gq,-r?}, where GY and

F? are the injection-source Green's functions. With this, (4) leads to
- q. q q q - t 1

fav(e Vv * TivplaA + fv[c qa + riles, + £, )]av = x,(x")p(x"), (T)

where Xy is the characteristic function of V, défined as xv(z)-[!,},ol when
xe{V,3V,V'}, in which ¥ denotes 'the complement of 3VuV in R®. For x'edV, (7)
holds at points where 3V has a unique tangent plane, provided that the
surface integral is interpretedva;‘its Cauchy principal value.

Similarly, to arrive at the source~type integral representations for the

flow velocity, we take State A as above, while now: {pB,v?}-{pr,v?f), where

pr and va satisfy

i
aivff -0, (8)
Gf
-aipr T -b 8(x-x"), (9)

where b1 is an arbitrary constant vector. Expressing the linear dependence of

Gf Gf Gf Gf £ .f f f
P~ and v, on b, by writing {p ,v‘j } bi[ ri'Gij}’ where I, and Gij are the

force-source Green's functions, (4) now ylelds:
_ £ £ f £ . .
Iav(rlvjvJ + Gyyvplda + fv[riq + Gy logy + £ )]av = x,(x")v, (x")(10)
The Green's functions occurring in (7) and (10) will be taken to apply to the
"infinite medium" with the properties of the relevant domain, and are calcu-

lated analytically in Section 5.

4, Boundary-integral equations\

Equations (7) and (10) for x'ed! are now applied to each homogeneous subdo-
main of the configuration. Then, (7) leads to an integral relation between p
and Vv at 3V which is of the first kind in vivy and of the second kind in
p, while (10) leads to an integral relation of the first kind in p and of the
second kind in ViV At interfaces between two different media we enforce the

continuity of p and vivl; at the outer boundary we prescribe either p or
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ViV In this way, we end up with a system of boundary-integral relations.
Since the resulting number of equations equals twice the number of unknowns,
there is a freedom in choice of equations to be employed in the calculations.

We shall employ a complete system of the second kind, both in p and v It

V..
is observed that in the literature (see, e.g. [2]), the boundary—inteéril—
equation formulation is usually based on (7); this leads to integral equa-
tions of the first kind in vivy and of the second kind in p. There is some
indication that using integral equations of the second kind, the systems of
linear, algebraic equations that result after discretization are better con-

ditioned than the ones that result from integral equations of the first kind.

5. Evaluation of the Green's‘rlow states in an unbounded homogeneous domain

The injection-source and force-source Green's flow states pertaining to a
homogeneous medium of infinite extent are calculated with the aid of a three-
dimensional spatial Fourier transformation method. Let the Fourier transform
H-E(E) over R® of a function h=h(x) be defined by

;(k) - I exp(~-ik x )h(x)dv, (1)
- xeR? nno=

where i denotes the imaginary unit and EER’ is the wave vector in Fourier-

transform space. According to Fourier's theorem, we then inversely have

h(x) = (2u)'3[ exp(ik x )h(k)dV. (12)
keR® ne

First, (11) is applied to (5) and (6). Applying the rule 3i=iki, the
transformed equations lead to the expressions:
;Gq = aGexp(-ik _x') (13)
n"n"’
;Gq = -ik.K aaexp(-ik x') (14)
i Jii n“n’’
where Kij denotes the inverse of R1j and G is defined by
ot -1
G = (kiKiij.) . _ (15)
Evaluation of the relevant inversion integral yields
Glx) = [det(K, )1 /2/Cum(R, x.x.) 2] (16)
= ij 13%1%) *
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Elementary rules of the Fourier transformation then lead to

pC9 = ac(x-x"), | (17
Gq ' 8
Vi -aKjiBJG(gﬁz ). (18)

q

From (17) and (18) the Green's functions c¢% and r immediately follow. In a

i
similar way, pr and vf? are obtained as
pSf - ~b K, ;3,6(xx"), (19)
ar 9 0(555')‘t b

8(x-x'), (20)

vi = KypbpKigdydg FLRTY

from which the expressions for F{ and ij directly result.

6. Numerical aspects in solving the boundary-integral equations

To discretize the system of boundary-integral equations, we first subdivide
a9V into NT planar, triangular surface elements ST(n) whose vertices have the
position vectors {xi(n,q). q=1,2,3} with xi(n,q+3)-xi(n,q). Each two adjacent
triangles have an edge in common; their orientation is such that the
direction of circulation forms a right-handed system with the (constant)
normal vi(n) to ST(n). Next, in each triangle, the surface source distribu-
tions are expanded in terms of linear interpolation functions. Let Li(n,q)
further denote an outwardly directed vector along the g-th edge CT(n,q) in
the plane of ST(n). Then, the linear function ¢{x,n,q) that equals unity when

x=x(n,q) and is zero in the remaining two vertices can be written as
¢(x,n,q) = '/, - [xi - bi(n)JLi(n,q)/ZA(n) when xeS.(n), (21)

where bi(n) is the position vector of the barycenter of ST(n) and A(n) is the
* area of ST(n). ¢(x,n,q) is used as expansion function in each triangle ST(n).
To conclude the discretization procedure, we apply the method of collocation
(point matching) at the vertices of the triangles, i.e. we take x'=x(m,s)

(m=1,2,...,NT; s=1,2,3). At a ve;tex.'bi

average of the vectorial areas of those triangles that have that vertex in

i{s taken to follow from the welighted

common. Combining these steps, we are led to a system of linear, algebraic
equations for the unknown values of elther p or v v, at the nodes of the
discretized boundary. In the matrix of coefficients and in the known right-

hand side of this system of equations, the following surface integrals occur:
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f

q q £ . -
[Ill,112,I131.Il"i}(n,q,m,s)-[iesT(n)¢(5,n,q)(G 'viri'ri'vjaij}(i’m's)dA

{(22),(23),(24),(25)}. The contributions resulting from q and £, in (7) and
(10) can be evaluated once the sources have been specified. The remaining
integrals associated with the gravity term pg; are evaluated analytically by

employing the expressions for the relevant Green's functions.

7. Numerical results

As a first test of our computer code we have applied a simplified version of
it to the given flow field p=-3 2(x,+x2+x,)+x,*3 s *-1 and v=3 =Y z(i +1,41,)
in the source-free domain V: 05x,,x,,X:S1 with the homogeneous and isotropic
medium p=1, R=1, and g=i,. The boundary surface of V is denoted by
aV/=3V,uaV,, where p is prescribed on 3V, and Vv, on aV,. Each face of the
unit cube is divided into sixteen isosceles rectangular triangles, four
triangles occupying a square Fégion of dimension 0.5x0.5. On each triangle, p
and vV are approximated by their values at the barycenter. Collocation is
now applied at the barycenters of the triangles. The resulting system of
linear, algebralc equations is solved by a direct method. Three cases were
considered: (i) 8V;=(x,=0,08x,,x,s1}, (ii) 3V,~{x,~0,05x,,x,S1}u

(0Sx, ,x,81,%,=1}ul0Sx,,%,81,x,~1}, and (i11) V,~[0.5%x,,%X,51,x,~0}. The
local error in the pressure is defined as ERR(p)=|p

|/max(|p (),

com Pex ex,bary
where Poom and Py are the computed and exact values of the pressure,

respectively, and max(|p |) denotes the maximum vaiue of Pey 3t the

ex,bary
barycenters of all triangles. Similarly, the local error in the normal flow
velocity is defined as ERR(“ivi)'Ivivi,com—vivi,exl (note that max(|v_ [)=1).

Further, the global root-mean-square error in the pressure is defined as

1y
we(e) = ([ 1oy = Pl ten # Jyy, loglrenl /5 @9)

a similar expression is used for the global root-mean-square error in the

normal flow velocity RMSE(vivi). A summary of the results is presented in

Table I. Global and local errors in p and ViVye

test  RMSE(p) RMSE(viv;) ' ERR(p) at ERR(v;v,) at
case {ﬁnépol {%'%DO} {Orlh'l_} 0...,‘*—)
(1) 0.046 0.065 0.025 0.039 0.020 0.027
(i) 0.017 0.092 0.003 0.012 0.027 0.037

(1if) 0.009 0.087 0.001 0.002 0.030 0.091
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Table I. The results obtained for p are more accurate than the ones for ViV
This is ascribed to the fact that p is solved from an integral equation of
the second kind, while Vivi is solved from an integral equation of the first
kind. At points near edges the error increases; a finer discretization is
expected to lead to more accurate results. The implementation of a complete
system of the second kind as discussed in Section Y is under development.

All computations have been performed on a IBM PC/AT. Programs have been

written in Fortran 77. The CPU time for each test case was about 8 minutes.

Appendix. Evaluation of ILi(n,q,m,s) (isotropic case)

The integrals (22) - (25) can be evaluated analytically. As an example, we

- discuss IL1 for the isotropic case where Rijnﬂsij‘ From (22) and (21) it

follows that IL1 has the shape: -

IL1(n,q,m,s) = (R/4x){S1(n,m,s)/3 + StQ(n,q,m,s)/24(n)], (A1)
where

S1{n,m,s) = J [x=x(m s)|_1dA (A2)

giity £€ST(H) o048 ’ 1
stq(n,q,m,s)= I [x,-b,(n)]L, (n,q)|x-x(m s)|_1dA . (A3)
1] | Rt ] _’SGST(n) 1 i i ? 2 2 ’ .

To calculate S1, we first decompose xi—xi into a part normal to ST(n) and a
part parallel to ST(n), i.e.

Xy = xi(m,s) - cvi(n) Yy with z;-vi(n)(x1 - xi) when EeST(n). {a)

Since y is a vector in the plane of ST(n), we can represent it with respect
to some local two-dimensional orthogonal Cartesian reference frame in this
plang. Let yu with a=1,2 denote the Cartesian coordinates in this reference
frame, then (cf. (A2))

-1
S1(g) = IxeST(n)'cz * vyl dA. (45)

We now assume g + 0, differentiate (A5) on both sides twice with respect to
t, and apply in the resulting right-hand side the relation:

-3 -5 -3
-lg? + Yayal + 3g2)g? + yayal = Ba[yalcz + yayal ]. (a6)
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Then, upon successively using the two—dimensional form of Gauss' theorem and
rewriting yuyu with respect to the original reference frame,'we end up with

3

3*s1(g) = Equ‘vi(n,q) g2 + y.y s, (A7)

yeColn,a)’i sl
where v?(n,q) is the outwardly directed unit vector along the edge CT(n,q)
lying in the plane of ST(n). To solve S1{g) from (A7) we simply integrate
either side twice with respect to r and evaluate the remaining line inte-
grals. After some tedious but elementary calculations the final result
follows (see [3]). Due to limitations in space, the results are not re-
produced here. To evaluate S1Q, we observe that (¢ f, (AU})

[z

X{ - bi(n) - xi(m,s) =b(n) +y, + cvi(n) when x.S.(n), (A8B)

after which S1Q can be evaluated along similar lines. The same techniques can
be applied to the surface integrals IL2, IL31, I31, and ILHi. Integrals of
the type St have also been evaluated, in a slightly different manner, by [4]
and [5]. )
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