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MAGNETIC FIELDS
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Abstract

The vector integral-equation method for computing three-dimensional, quasi-

static magnetic fields is developed with a view to its application to config-
urations of the type that occur in magnetic recording. Starting from appro-

priate Green-type vector integral relations for the magnetic-field quantities,
the relevant integral equations are derived. Their numerical handling is brief-

ly discussed.

Contents

1. Introduction

2. Description of the configuration .

3. The magnetic field in the configuration

4. Green-type integral relations for the magnetic-field strength and

the magnetic-flux density

5. Integral-equation formulation of the magnetic-field problem

6. The magnetic-field integral equations and some of their properties
. References

A. Vector Green identities



de Hoop 459

1. INTRODUCTION

Integral-equation methods have proved their usefulness for calculating elec-
tromagnetic fields in a variety of configurations. Especially, they have been
used extensively in analyzing electromagnetic scattering and diffraction prob-
lems (cf. De Hoop 1977). The main advantage of the method lies in its flexi-
bility as regards shape, size and physical properties of the different con-
situents that -together form the configuration. Its implementation on the
computer offers no extreme difficulties and in this respéct, the only limita-
tions seem to be the computation time on and the storage capacity of the
computer system at one's disposal. |

For the computation of quasi-static magnetic fields, domain-type as
well as boundary-type integral-equation methods have been developed (Holzinger
1970, Banchev and Voroszhtsov 1976, Iselin 1976, Simkin and Trowbridge 1976,
Trowbridge 1976). In many cases {Simkin and Trowbridge 1978, Armstrong et al.
1978, Carpenter 1977), either magnetic scalar or magnetic vector potentials
are introduced to arrive at the desired source representations that are needed
as a starting point for the integral-equation formulation. However, the po-
tentials suffer from the disadvantage that magnetic-field boundary conditions
are not directly expressed in terms of them. For this reason, expressions in
which only the magnetic-field quantities themselves occur, are to be preferred.
The starting point for deriving such a relation is the vector Green identity
of the third kind. Application of this identity to the magnetic-field strength
or to the magnetic-flux density leads, after some transformations of the
-relevant integrals, to integral relations that hold for piecewise continuous
source distributions.

In the configuration thdt we are going to discuss, three different
kinds of objects are present‘in otherwise free space: (1) objects of infinite
permeability, (2) perfectly conducting objects, (3) noh-conducting objects
with a finite permeability. In objects of the kinds (1) and (2), the magnetic
field cannot penetrate; as a consequence, their influence on the magnetic
field is accounted for by boundary conditions invoked at their boundary sur-
faces. In objects of the kind (3), the magnetic field does penetrate and their
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influence on the magnetic field is accounted for by invoking, in their in-
terior, the constitutive relation pertinent to the magnetic material of which
they consist. The configuration is excited by a current carrying coil with
prescribed distribution of the volume current density (Fig. 1).

o,

Fig. 1. Configuration for which the integral-equation formulation
of magnetic-field problems is developed.

The dimensions of the configuration are assumed to be so small, that the
travel time for electromagnetic waves to traverse it, is negligible on the
time scale on which the magnetic field varies. Then, the quasi-static approx-
imation of magnetic-field theory applies. ' '

2. DESCRIPTION OF THE CONFIGURATION

In the configuration, three different kinds of objects are present in other-
wise free space. Further, a current carrying coil that excites the configu-
ration, is present. The nomenclature used to distinguish the different sub-
domains, is given in Table 1. It is assumed that the intersection of each

pair of domains out of Vu’ Vys Vs and Vs is empty (Fig. 1).

1
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Table 1. Nomenclature adopted for the different subdomains of the configu-.

ration
domain boundary surface physical property
Vu avu non-conducting material of
finite permeability
V1 avl non-conducting material of
' infinite permeability
V2 3V2 perfectly conducting material
Yo : .vacuum domain
VJ non-magnetic material carrying

prescribed external current

To Tocate a point in the configuration, we employ orthogonal,
Cartesian coordinates x,y,z with respect to a given, orthogonal, Cartesian
reference frame that is at rest with respect to the (stationary) objects.
The reference frame is specified by its origin 0 and the three mutually
perpendicular base vectors of unit length ix’ jy, jz. In the given order, the
base vectors form a right-handed system. The position vector is denoted by
rs; it is given by

i e
ro=xi, +yi

..y + Ziz‘ K (1)

The time coordinate is depoted by t.
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3. THE MAGNETIC FIELD IN THE CONFIGURATION

We employ the quasi-static approximation of the magnetic+field equations.
Then, themagnetic state in the configuration involves the following quantities:

= magnetic-field strength (A/m),
magnetic-flux density (T),

)

= magnetization (A/m),
volume density of electric current (A/mz),

LSV B v o B s o

1

while the induced eiectric field is
E = electric-field strengfh (V/m).
In parantheses, the pertaining SI-units have been indicated.
Field equations
At any interior point of a domain where the magnetic properties either do not

vary or vary continuously with position, the field quantities are continuous-
ly differentiable and satisfy the field equations

vxH=J, (2)

Y xE=- 9338, (3)

v-B=0, : (4)

v-J=0, (5)
while

100
1
—
o
—
1”C
+
1=
~—
-
—
(o))
~—
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where

7

Uy = 4m 1077 H/m | (7)

is the permeability in vacuo. The operator V 1is given by

V=10, +is, +1.9, (8)

and partial. differentiation is denoted by 3.
Constitutive relations

First of all, we assume that no permanent magnetization is present. Hence M
only contains a field-dependent part and the interrelation between Mand H

is taken as constitutive relation. If now, the magnetic materials present in
the configuration are instantaneously reacting and time invariant, the quan-
tities H, B and M all have the same time depehdehce as the exciting current
with volume density J. In this case, the calculation of the magnetic field in
the configuration is a problem in space only. In all other cases, the calcu-
lation of the field is a problem in space-time. In particular, the latter
applies to all cases where the magnetic behaviour of the materials is non-
linear and/or hysteretic. One of the simplest cases arises if the material is
Tinear, time invariant, instantaneously and locally reacting, and isotropic.
Then, we have

M(rst) = x,(r) H(r,t), (9)
where X is the magnetic susceptibility of the medium.
Boundary conditions

At surfaces across which the properties of the media show abrupt changes, the
field equations (2)-(5) have to be supplemented by boundary conditions. These
are
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n x Hand n - B continuous across BVU, (10)
nx H -0 upon approaching 8V1, (11)
n =B~ 0 upon approaching aV,. (12)

Here, n denotes the unit vector along the normal to the relevant boundary

surface.
Conditions at infinity

For any configuration of the type under consideration where the non-vacuum
parts occupy a bounded subdomain of ]Q3, we have

{H, B} = Order(lrl_3) as |r| + «, uniformly in all directions. (13)

4. GREEN-TYPE INTEGRAL RELATIONS FOR THE MAGNETIC-FIELD STRENGTH AND THE
MAGNETIC-FLUX DENSITY

The starting point for the vector integral-equation formulation of magnetic-
field problems in the configuration described in Section 2 are Green-type
integral relations for the magnetic-field strength and the magnetic-flux
density. These follow from an application of the vector Green identity of
the third kind (A.10), in which Q is successively identified with H or B.

Green—type integral relation for the magnétic—field strength

In (A.10), we identify Q with H. Recalling that

VeH=-V-M (14)
VvxH=4Jd, (15)

and hence,
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we obtain (cf. Fig. A)

[- (7« M)nG + J x nG - (n + H)T6 - (n x H) x V61dA - [, G[ - ¥ x J

fa

- y(V « M)3dV = {1,3,03H(r") if r'e {V,0v,0'}. (17)

Now, (17) only holds if the right-hand side of (16) is piecewise continuous,
which is a rather severe restriction. In view of the application of the theory
to the computation of magnetic fields, we would Tike to have a relation of the
type (17), but for piecewise continuous distributions of J and M. Such a re-
lation is arrived at by using the property

VG = - V'G, (18)
where

and applying appropriate theorems of vector analysis to the left-hand side of
(17). In this respect, the following steps are carried out?

fy G(¥ x 9V = [, 17 x (6J) - (Y6) x JIdV
= foy D x 8 dA+U'x [, GIdV, (20)
fy G V(Y » MdV = [, {VIG(Y = M) - (VG)(V - M)}dV

= Joy (¥ - M)ﬁG dA + V' [y G(Y -+ M)dV (21)

and
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fy G(Y » M)AV = [, [V - (GM) - (VG) - MIdV

= fav G(n » M)dA + V' - IV GM dV. (22)
Using (18)-(22) in (17), we obtain
V' [y 6(n - B/ug)dA - 7' x [, G(n x H)dA

7 x f, 6 dV + (T - f, GMdV) = {1,3,0M(r") if r'e {V,0V,V'}.

v

(23)

Equation (23) is the desired Green-type integral relation for the magnetic-
field strength. the, that the integrands in the boundary integrals are con-
tinuous upon crossing an interface across which J and/or M jump by finite
amounts. Hence, these interfaces do not contribute to the left-hand side if
(23) is applied to adjacent domains and the resulting equations are added. In
the final result, only boundary integrals over the beurdary of the domain of
application remain and (23) holds for piecewise continuous distributions of J
and M. For points of observatienonan interface, the value of H(r') is to be re-
placed by half the sum of the Timiting values on either side of the interface.

Green—type integral relation for the magnetic—flux density

In (A.10), we identify Q with B. Recalling that

v.B=0, (24)

VxB=uyd+ v xM (25)
and hence,

(Y« 9)B = - ug(V x J) - up¥7 x (¥ x M), (26)
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we obtain (cf. Fig. A)

foy [lugd + ug¥ x M) x nG - (n - B)¥G - (n x B) x YGIdA -fy 60 - ug¥x J

= yp¥ x (V% M)IdV = {1,3;03B(r') if r' e {V,0V,V'}. (27)
Equation (27) only holds if the right-hand side of (26) is piecewise continu-
ous. A relation of a similar kind, but for only piecewise continuous distribu-
tions of J and M, is arrived at in a similar way as above. First of all, (18)
-(20) are used; next we employ the relations

[ G LT x (¥ x M)IdV = [, {¥ x [G(Y x U)] - (V) x (¥ x M)}dV
fap 1 X G(T x M)A +T' x f, G(T x M)dV (28)

and

f, (T % M)AV = , [7 x (6) - (T6) x W14V

= fgv n x (GM)dA + V' x fV GM dV. (29)
Using (18)-(20), (28) and (29) in (27), we obtain

Y' fav G(D : @)dA - Yl ® IBV G(D X UOH)dA + \Z' X IV GUOQ dv

ST G dV) = CLB0IB(Y) AT rte (LU0 (30)

Equation (30) is the desired Green-type integral relation for the magnetic-
flux density. Note, that the integrands in the boundary integrals are con-
tinuous upon crossing an 1nte}face across which J and/or M jump by finite
amounts. Hence, these interfaces do not contribute to the left-hand side if
(30) is applied to adjacent domains and the resulting equations are added.
In the final result, only boundary integrals over the boundary of the domain
of application remain and (30) holds for piecewise continuous distributions
of J and M. For points of observation on an interface, the value of B(r') is
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to be replaced by half the sum of the Timiting values on either side of the
interface.

The integral relations (23) and (30) have been derived for the bounded domain
interior to the bounded closed surface 3. They equally well apply to the un-
bounded domain exterior to a bounded closed surface, provided that the condi-
tions at infinity (13) are invoked. Note, that for (23) and (30) to hold in
this case, the unit vector n along the normal to oV must again point away
from V. As far as jumps in J are concerned, these are, on account of (5),
admissible in its tangential components only.

5. INTEGRAL-EQUATION FORMULATION OF THE MAGNETIC-FIELD PROBLEM

The integral relations (23) and (30).are now employed to arrive at the inte- -
gral-equation formulation of the magnetic-field problem pertaining to the
configuration described in Section 2. Taking into account the boundary con-
ditions on -3V (cf. (11)) and Wy (cf. (12)), we introduce the following
quantities

21(0) = oy, 60 - Bughdh, | (31)
Ay(r') = fguz G(n x ugH)dA, (32)
Byle') = Jy  Gugd 4V, (33)
I,(c') = fy e dv. - (34)

Using the integral relation (23) for the magnetic-field strength and recalling

that on avl and 8V2 the unitivector'g along the normal is taken ds in Fig. 1

(i.e. pointing toward'Vob;-it\follows that

1 _1 1 "1
ST g Y Ay b T XAy

+ Yl(vl

S T) = {1,3,0M(r') i rte Ly, avy, vyl (35)
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Similarly, the integral relation (30) for the magnetic-flux density yields
SV + T x Ay £ 7 x A
+ onl X (V' x I ) = {1,%,0}@([\') if r'e {VO,aUO’V(')}. (36)

In these expressions, n - B/uo is an unknown scalar quantity on BVl, while

n x H is an unknown, two-component, vector quantity on BVZ. In VJ, J is
assumed to be known, while in Vu » the quantities M and H are interrelated
through the constitutive relation, and either of the two can be considered as
unknown. ,

By taking, in (35) and (36), r' « 3V1, r' e 8V2 and r' e VU’ re-
spectively, a number of integral equations is obtained from which the un-
known field distributions can, in principle, be determined. Some of the in-
tegral equations are of the first kind, others are of the second kind
(cf. Table 2). In the next section, some features of these integral equations

will be discussed.

Table 2. Integral equations obtained from the Green-type integral relations

domain expression for unknown field resulting integral
the field quantity quantity equation
vy n . B/uy n - B/y, 2nd kind
vy nxH n -+ B/y, 1st kind
v, n - By | nxH 1st kind
Vs n x H n x H 2nd kind
v H Hor M 2nd kind
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6. THE MAGNETIC-FIFLD INTEGRAL EQUATIONS AND SOME OF THEIR PROPERTIES

For all configurations met in practice, the'integra1 equations referred to in
Table 2 have to be solved numerically. This implies that, in three different

respects, approximations are made:

(1) the unknown function is approximated by a finite sequence of "expansion
functions" the coefficients of which are to be determined;

(2) the resulting integrals are, in most cases, evaluated numerically (i.e.
approximately) by a suitable numerical integration formula;

(3) the equality sign in the equations is satisfied in some approximate sense,
usually by weighting the integral equations through an appropriate sequence
of “weightihg functions” over their domain of application (the collocation
method can be considered as a special case of this).

The question now arises, how the relevant approximations made on avl and avz
and in (ﬁ manifest themselves in lb. This is the more important in those
cases where the computed field 1in Y% is used for further processing to yield
certain characteristics of the magnetic system as a whole. As an example, we
mention magnetic-recording configurations, where the computed external field
is used to compute the harmonic or the digital response of the entire record-
ing system. In such applications, it is reasonable to require the field to
satisfy, in V., the relevant magnetic-field equations (cf. Section 3). Now,
this is in general not the case, unless the approximate surface distributions

satisfy the compatibility relations
[ T +<Hds =0, : (37)

for any closed curve C, with unit tangent vector i, that is situated on
either avl or avz, and |

Joy n+BdA=0. (38)
1

Equation (37) follows from (2), together with the condition that no electric
current flows into or out of either 3V or av,. Equation (38) follows from
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(4), together with the boundary condition on 8U2 and the condition at infini-
ty (13), and guarantees that, at infinity, the magnetic field is of a dipole

character.

Equation (37) makes also clear, that for the single unknown quanti-
ty on avl we can either select a single integral equation of the second kind
or a two-component vector integral equation of the first kind, while on v,
the two-component unknown vectorial quantity itself must satisfy (37). For
the way in which (36) and (37) can be implemented, as well as for the appli-
cation of the theory to a number of magnetic-recording configurations we
refer to Van Herk (1980).
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APPENDIX

A. VECTOR GREEN IDENTITIES

By analogy with potential theory, three different kinds of vector identities
of the Green type will be distinguished. The identities of the first and the
second kind apply to two vector functions of position, P = P(r) and Q = Q(r),
that are defined in a bounded domain V and on its boundary surface 9V, and are
continuously differentiable in V and on 3V the required number of times. In
the identity of the third kind, we choose P = a G, where a is an arbitrary
constant vector and G is a scalar Green's function that is singular at r =r'.
In this latter case, three positions of r' have to be distinguished, viz.

r' eV, r' e 3V and r'e y', where ' is the complement of/ Vv 3V in IR3.

Vector Green identities of the first kind

Application of Gauss' divergence theorem to the vector function P(V « Q) yields

[opne P(Y £ Q) dA= [, {(T ~P)(Y - Q) +P-LV(Y - Q)I}dV. (A1)

Application of Gauss' divergence theorem to the vector function P x (V x Q)
yields

nePx (¥xQ)IdA= [, {(TxP)(VxQ)-P-L¥x (VxQIdV. (A.2)

Jay

Equations (A.1) and (A.2) are vector Green identities-of the first kind.
Vector Green identities of thg second kind

From (A.1) and a similar formula that results from interchanging P and Q, we
obtain T

N [P(Y-Q)-QV-P)IdA=f, {P+[V(Y+Q)T~-Q- YT -

Jav



de Hoop 473

From (A.2) and a similar formula that results from interchanging P and Q,
we obtain

Joy n = [P x (¥ xQ) -0 x (7 xP)IdA
= Jy TP ¥ x (T x Q)T+ QLY x (¥ x P)IHV. (A.4)

Addition of (A.3) and (A.4) yields

fay D+ [P(Y = Q) + P x (7xQ) - Q7 - P) - Qx (7 x P)ldA
=fy P -L(Y - ¥)Q1 - 0 - [(V - V)PI}AV, (A.5)
where:we have used the property

T+ )-yx(Tx )= (T-0) . (A.6)

Equations (A.3), (A.4) and (A.5) are vector Green identities of the second
kind.

Vector Green identity of the third kind

The vector Green identity of the third kind is arrived at by taking, in (A.5),
for the vector function P the expression

a G, (A.7)

1o
n

where a is an arbitrary constant vector, while G = G(r' - r) 1is given by

1/4n|r' - r| withre RS, ' ¢ R, (A.8)

@D
]

In (A.8),
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(' - )12 with [...12 2 0. (A.9)

In these expressions, r' denotes the position vector of a fixed point of
observation. Three positions of r' have to be distinguished, viz. r' e V,
r'edVandr' e V'. If r' e Vorr' e dV, P is singular at r = r'. The

usual procedure of ‘'excluding a sphere with vanishingly small radius' can

be used to assign a meaning to (A.5) in these cases. In the resulting expres-

sions, the factor a can, through the application of a number of vector formu-

las, be brought in front of the integral signs. The observation that a is
arbitrary, then leads to

foy LT + Q)G + (¥ x Q) x nG - (n + Q)¥G - (n x Q) x YG1dA
- fy GL(Y - 7)Q1dV = {1,%,0}9(5') ifr' e {v, v, V'}. (A.10)

Equation (A.10) 15 the vector Green identity of the third kind. The result
for r' e oV holds at points where 3V is locally flat. (Fig. A).

oV

Fig. A. Configuration for which the Green 1deﬁtities are derived.
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