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6. GENERAL CONSIDERATIONS ON THE INTEGRAL-EQUATION FORMULATION OF
DIFFRACTION PROBLEMS

by A.T. de Hoop,

Department of Electrical Engineering, Delft University of Technology,
Delft, the Netherlands

This chapter deals with the integral-equation formulation of electromag-
netic scattering and diffraction problems. As compared with other
techniques for calculating the electromagnetic field in the presence of

a scattering object, the integral-equation method has the advantage of
yielding accurate results for scattering objects whose shape, dimensions
and physical properties can vary in a wide range. For any non-trivial
problem, the method has to be implemented on a combuter. The computational
aspects of the method have led to our preference for an analysis that
follows as closely as possibleﬁthe different steps that the computer
programme will have to carry out. In this respect our presentation differs
somewhat from the ones that emphasize the operator formalism that under-—
lies the method. Although the operator formalism is of vital importance

to the understanding of the mathematicé behind the use of integral equa-
tions, it is believed that an analysis close to the electromagnetics of
the scattering problem has its own merits. From this latter point of view
the present contribution has been written.

The first step in the integral-equation method consists of acquiring
proper integral representations for the electromagnetic—field quantities
involved. This is done in a rather unorthodox way by consistently using
the spatial Fourier transform of the electromagnetic field equations
pertaining to field quantities whose domain of definition is a subdomain
of three-dimensional space (Section 6.5). Next, the integral representa-
tions are used to represent the scattered field (Section 6.6).

When this has been achieved, we are ready to obtain the desired
integral equations. In this respect we distinguish between four different
types of scattering objects, viz. (a) inhomogeneous, penetrable objects,
(b) electrically impenetrable (i.e. perfectly conducting) objects, (c)
homogeneous, penetrable objects, (d) objects of vanishing thickness. From
the relevant integral equations (discussed in Sections 6.9, 6.10, 6.11 and
6.12, respectively) numerical results can be obtained by applying the

method of moments. In Section 6.13 this method is discussed in some detail.
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To have some check on the numerical results ome should at least inspect
to what degree of accuracy the conservation of energy in the scattered
field and/or the field-reciprocity relation pertaining to the scattered
field are satisfied. For this purpose we have included a short derivation
of the relevant theorems (Sections 6.8 and 6.7, respectively) and their
application to plane-wave scattering.

The analysis is carried out in the frequency domain. We restrict our
scattering objects to be"lineaf and time invariant. Then, each frequency
component of the electromagnetic field scat%ers-independently of any otﬁer
fréquency component that may be present in it. Along similar lines, the
scattering of electromagnetic waveé in the time domain can be investigated.
Much useful material on the application of integral equations to the
solution of three-dimensional scattering problems can be found in [6.1].

A discussion of integral—equépion methods for transient scattering is found
in [6.2]. |

SI-units are used throughout the chapter.

6.1 The geometry of the configuration

In a medium of infinite extent an object is present whose electromagnetic

properties differ from those of its surroundings (Fig.6.1). The object

scattering surroundings

object

____________ point of

observation

0
Fig. 6.1. Geometry of the scattering object, with ite surroundings

and an arbitrary point of observation.
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occupies the domain inside a bounded closed surface S. S is assumed to be
sufficiently regular, i.e. the unit vector n along its normal is a piece-
wise continuous vector function of position on S. The bounded domain in-
side S is called VI’ the unbounded domain outside S is called VO, while
we take n such that it points away from V].

To locate a point in the configuration, we shall in our general consi-
derations employ the orthogonal, Cartésian coordinates x, y, z with respect
to a given, orthogonal, Cartesian reference frame. The latter is specified
by its origin 0 and the three mutually perpendicular base vectors of unit
length ix’ iy’ iz. In the given order, the base vectors form a right-handed
system. The time coordinate is denoted by t. In specifying the position of

an observer we shall often use the position vector

r = x1

1 + y}_y + Ziz' (6.1)

, Lo . . 3 .
Further, the variables of integration over a subdomain of IR™ will often

collectively be denoted by
r' =x'i +y'i +z'i. (6.2)
The position of an observer can also be expressed in terms of the distance

r from the origin to the point of observation and the unit vector §

pointing from the origin to this point. In terms of r we have

1 1
r=(xr)? = &+ y> o+ 20)?, (6.3)
1
in which (...)% = 0 and

—_—

8 = x/r. - (6.4)

Obviously, the end point of 8 determines the position on the surface Q of

the sphere of unit radius and‘centre at' the origin, i.e.
Q={rlr e R, rer = 1}. (6.5)

The computations related to the integral-equation formulation of scattering
problems often require the numerical evaluation of volume integrals over
Vl and/or surface integrals over S. One of the methods to perform the

numerical integrationsis to subdivide Vl into a suitable number of
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tetrahedra and S into the corresponding plane triangles. The maximum dia-
meter of these elements should be so small that with sufficient accuracy
V. coincides with the union of the solid tetrahedra and S with the union

1
of the plane triangles (Fig. 6.2). As the tetrahedra and the triangles

Fig. 6.2. Subdivision of'% into tetrahedra and of S into triangles.

need not be mutually identical, it is advantageous to reduce the volume
integral over an arbitrary solid tetrahedron and the surface integral
over an arbitrayxy triangle to a suitable stanlard fcrm.

First, we consider the volume integral
I, = [[[; £@) av(@), (6.6)
A

where TV denotes the solid tetrahedron whose corners have the position
vectors ;s Iys Ig and I, respectively and where f denotes some integrable
function of position with domain TV' The desired standard form is arrived

at by writing
r = AQ£]j£4) + u(£2754) + v(£3—£4) + I, where 0 < A < 1,

0O<p<l,0<v<land X +pu+vy<lforre TV. (6.7)

y

The volume V of TV can be expressed in terms of the position vectors of
its cormers as follows:

Vo= (1/6)[r;* (r,xry) = r,° (xgxx,) + Ty xry) - _r_4'r(gl><£2)‘] (6.8)

provided that the corners are numbered as shown in Fig. 6.3 (see Exercise

6.3). With the aid of (6.7) and (6.8) we arrive at (see Exercise 6.4)
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0

Fig.6.3. Tetrahedron TV and numbering of its cornmers.

[ff. £@) av() = 6v], dkf'(l)—A du
TV
o e gt +UDIE) 4V, (6-9)

Secondly, we consider the surface integral

1= fTAf(g)g(_r_)dA(_{), (6.10)

where TA denotes the plane triangle whose corners have the position vectors

;s I, and Ias respectively, £ denotes some integrable function of position
with domain TA and n is the unit vector along the normal to TA as shown in

Fig. 6.3. The desired standard form is arrived at by writing
r, where 0 < A <1, 0 <y <1 and

\
I = Mz mrg) + u(r,rg) +org

A+ u<1forre TA‘ (6711)

The vectorial area A of TA can be expressed in terms of the position vec-

tors of its corners as follows
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T I Xr, * rgXry) (6.12)

- 2 =3 3

A= i
(see Exerqise 6.5). With the aid of (6.11) and (6.12) we arrive at (see

Exercise 6.6)

ffT'E(E)P_(E) dA(x) = 2éf(]) dr J’(’)'Af[x_gl *ur, + (1-=wrgd du. (6.13)
A

Y

EXERCISES

Exercise 6.1. Let f = f(r) denote a continuous function of position r imn

]R3 , l.e. f:lR3 + R with r ¢ IR3 and let S be the surface S = {_1;|f(£)

= constant}. Assume that f is continuously differentiable with respect to r
(i.e. with respect to x, y and z). Express the unit vector n = n(r), with
r ¢ S, along the normal to S in terms of the derivatives of f.

)
. = + 4 o 2 o= 1 1 1
Answer: n = *VE£/(VE£-Vf)?*, where V£ (axf)lx + (ayf)iy + (Bzf)l .

Exercise 6.2. Let n denote the unit vector along the normal to a certain

surface S in‘IR3 and let E denote some (real or complex) vectorial quantity

that is defined on S. Determine the expression for (a) the mormal part

E of E on S, (b) the tangential part E of E on S.
—norm — =tang =
Answer: (a) E = (@Bn; O E ~E-E .~ E- @Bn

= nx(Bxn) = (nxE) x n.

Exercise 6.3. Let S denote a sufficiently regular, bounded, closed surface

511]R3 and let V be the (bounded) domain interior to S. Then, from Gauss'
divergence theorem it follows that ”S n'r dA = fffvz_r_ dvV = 3V, where n
. denotes the unit vector along the normal to S, pointing away from V, and

vV = fffv dV is the volume of V. Show that application of this result to the
tetrahedron shown in Fig. 6.3 leads to Equation (6.8).

Exercise 6.4. Check Equation (6.9) by taking f(r) = | when r ¢ TV and

1-A
0

proving that fé arf dufé_k_u dv = 1/6.

Exercise 6.5. Let TA be the plane triangle in ]f3 used in Equation (6.10).

Show that the unit vector n along the normal to TA (see also Fig. 6.3) is
given by n = } A_1 [(Ezjgl) X (Eaﬁzl)], where A is the area of TA and derive

Equation (6.12) for A = ffT n dA.
o
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Exercise 6.6. Check Equation (6.13) by taking f(r) =1 when r ¢ TA and

1
2.

proving that fé dkfé—A du

Exercise 6.7. If £ = £(r) is a linear function of positiom, the integrand

in the right-hand side of Equation (6.9) can be written as f = A(f]—f4)

def . .
+ u(fz—f4) + v(f3ff4) + f4, where fi f(zi) with i =1, 2, 3, 4. Show that
in this case we have fffTVf(E) dv(r) = %(f]+f2+f3+f4) V. (This formula is
of practical importance to the numerical approximation of the integral in

Equation (6.9).)

Exercise 6.8. If £ = f£(r) is a linear function of position, the integrand

in the right-hand side of Equation (6.13) can be written as f = A(f]—fS)

+ u(fz—fB) + f3, where figgéf(gil with i =1, 2, 3. Show that in this case
we have ffTAf(E)EﬁE) dA(x) = (1/3>(f]+f2+f3)_é. (This formula is of practical
importance to the numerical approximation of the integral in Equation
(6.13).)

6.2 Description of the electromagnetic field in the configuration

The electromagnetic state in the configuration is characterized by the

five vectorial quantities

= electric~field strength,
= magnetic~field strength,
current density,

= electric—flux density,

fw |0 o = (e
i

= magnetic—flux density
and the scalar quantity
p = volume density of charge.

These six quantities will collectively be denoted as the electromagnetic-
-field quantities. Our analysis will be carried out in the frequency domain
and this implies that only a single frequency component of the electromag-
netic—field quantities will be considered. Let w denote the angular

frequency of the frequency component under consideration, then we shall
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denote the complex electromagnetic-field quaﬁtities associated with this
frequency component by {EKE)? H(x), iiﬁ)’ D(r), B(x), D(E)} exp(~iwt),
where i is the imaginary unit. By superimposing different frequency compo-
nents we can reconstruct electromagnetic fields that vary in time in a
rather arbitrary way (Fourier synthesis). For sinusoidal oscillations with
angular frequency w we simply take the real part of the complex expressions,
which résults into a time-periodic field with period T = 27/w.

In a source-free subdomain of ]R3 the quantities E = E(r), H = H(x),

J =J(x), D=D(x), B = B(xr) and o = p(x) satisfy the electromagnetic-

—ficld equations in the frequency domain

VxH=J- iuD, (6.14a)
V x E = iuB, (6.14b)
V<D = p, ‘ (6.14¢c)
VB = 0, (6.144d)
VeJ - iwp = 0. . (6.14e)

In analyzing the scattering configuration it is useful to distinguish the
field quantities in the scattering object from those in its surroundings.
Further, it is useful to consider separately the electromagnetic field that
would be present if the scattering object showed no electromagnetic con-

trast with its surroundings. This field is called the incident field; it is

defined in all space. The difference between the field that is actually
present in the configuration and the incident field is called the scattered
field; this is defined in all space except on S For the nomenclature regarding

the different field constituents we refer to Table 6.1.

Table 6.1. Nomenclature and properties of the different field constituents

n the scattering configuration

field quantities type defined in source-free in
EJ, g]’ i]’ 24, El’ P total field V1 VI

EO’ EO’ EO’ PO’ §O’ °o total field VO

EY, #', 0%, 0%, BY, o' incident field @R v,

EF, Eé, gé, 2?, gé, p°  scattered field R;\S VO

V] = scattering object, VO = surroundings; total field = incident field

+ scattered field.
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Due to the electromagnetic contrast between the scattering object and its
surroundings the electromagnetic properties of the configuration in general
change abruptly when crossing S. Hence, the electromagnetic—-field equations

have to be supplemented by boundary conditions on S. As far as the boundary

conditions are concerned we distinguish between three types of scattering
objects: (a) electromagnetically penetrable objects, (b) electrically

impenetrable (i.e. perfectly conducting) objects, (c) peffectly conducting
objects of vanishing thickness (screems). The relevant boundary conditions

and some of their corollaries are summarized below.
(a) Electromagnetically penetrable object

The scattering object is called electromagnetically penetrable if the elec-—

4 .
tromagnetic field can penetrate 'into the object. Then the tangential parts
of the electric-field strength and the magnetic-field strength are

continuous across S, i.e.
nx Ey=nxE and n x Hy = nx H when r ¢ S. (6.15)

In this case we assume that no perfectly conducting material is present,
which implies that neither surface current nor surface charge is present

on S.
(b) Electrically impenetrable (i.e. perfectly conducting) object

The scattering object is called electrically impenetrable or perfectly con-
ducting if the tangential part of the electric-field strength vanishes upon
approaching S through Vg, i.e.

n X = 0 when r € S. (6.16)

E
—0
] B

In this case, surface current and surface charge are, in general, present

on S. They follow from

o x EO = ES when r ¢ S (6.17)

and
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n-Dy = Pg when r e S, | (6.18)
where

QS = surface-current density,

pg = surface-charge density.

Note, that Eﬂis = 0. \

(e) Perfectly conducting object of vanishing thickness (screen)

If the scattering object is of vanishing thickness it is called a screen.
- +

A screen is a two-sided surface. Its two faces are called S and S,

respectively, its boundary curve will be called C (Fig.6.4). If, further,

the screen is perfectly conducting the tangential part of the electric~field

Fig.6.4, Scatterzng object of vantshtng thickness with its two faces

S” and ST and its boundary curve C.
étrength vanishes on both faces of the screen, i.e.

E =0 whenr ¢ $ and
——O — —

X

=

* = 0 when r ¢ S+. (6.19)

=]

X

me
|

On both faces, surface current as well as surface charge is present accor-

ding to



-6.11-

X Hy=J, whenreS, | (6.20a)

n'x H, = £s+ when r ¢ S, (6.20b)
and

n Dy =pg whenreS, | (6.21a)

n'p) = oy when r ¢ st (6.21b)

On C no charge can accumulate, since that would lead to a too singular
behaviour of the electromagnetig field in the neighbourhood of C (a charged
line has no finite energy). Let  denote the unit vector along the tangent
to C (Fig.6.4), then this condition can be expressed in terms of the

surface current density as

(E: X I).£S~ - Ob as r +~ C, (6.22a)

@ x D3 >0 asxr~C (6.22b)

Equation (6.22) is a weak form of the so-called edge condition. A more

detailed analysis leads to a specification of the local behaviour of the
electromagnetic-field components in the neighbourhood of the edge of a

perfectly conducting screen. For details, we refer to [6.3].

The next point to be discussed is the specification of the electromagnetic
properties of the media that are present in the configuration. In order.
that the frequency-domain analysis can be carried out for each frequency

separately, it is necessary that the media are linear and time-invariant.

Further, the medium surrounding the scattering object will be taken as
simple as possible, which means locally reacting, isotropic, homogeneous
and lossless. Then, its electromagnetic behaviour is characterized by

constitutive relations of the type

=0, D, = ¢.E., B, = uH

I Dy = Eofgr By = Moy

when re {source-free subdomain of VO}, (6.23)
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in which the permittivity €0 and the permeability Ho have real, constant
values that are also assumed to be positive. On account of the first

equation of (6.23) we then also have

Py = 0 when 1 € {source~free subdomain of VO}. (6.24)
In particular, (6.23) and (6.24) hold for the scattered field and as the

latter has no sources in VO we have ‘

-8 .8 S s s s
Jg =0, D" = EOE , B" = UOE-’ p- =0 when r € VO. (6.25)
As to the electromagnetic properties of the scattering object we will
additionally only assume that it is locally reacting and leave open the

possibility of its being anisotropic, inhomogeneous and lossy. The

constitutive relations are then of the type

‘gq consti- E
PJ = tutive E] when r ¢ Vl’ (6.26)
B matrix

where the constitutive matrix is a 3 X 2 matrix of the constitutive tensors
of rank two that describe the electromagnetic behaviour of the material. On

" several occasions it is advantageous to use the electromagnetic contrast

that the scattering object shows with respect to its surroundings. This

contrast is characterized by the contrast current density 24 (note that

50 = 0)., the electric contrast polarization
def o _
EJ = 94 EOEJ when r € V] (6.27)

and the contrast magnetization

i

when r € U]' (6.28)

L8 By/wy &

Finally, it is observed that our formulation of the problem includes the
case where any piece of linear, time-invariant, locally reacting matter is
present in empty space. In this case the values of €0 and Ho reduce to the

values of the permittivity and the permeability in vacuo, respectively.
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Any sinusoidally in time varying vectorial quantity (such as the electric-—
~field strength and the magnetic-field strength) has a certain state of

polarization. The latter can be either elliptical, circular or linear and

can easily be inferred from the complex representation of the relevant
field quantity. The criteria pertaining to the electric-field strength are

listed in Table 6.2.

Table 6.2. State of palarization of a stnusoidally in time varying vec—

torial field quantity. (The criteria shoun are those for the electric—freld

strength.)
state of polarization criterion
elliptic Zgn general
circular E‘E=0

*
linear ExE =0

The sinusoidally in time varying electric-field stremgth is given by

* .
Re[E(r) exp(-iwt)]; = denotes complex conjugate.

EXERCISES

Exercise 6.9. Show that V:{J-iwD) = O and explain that this result is

Compatible with Eq.(6.14a).

Exercise 6.10. Explain that Eq.(6.14d) is compatible with Eq.(6.14b).

Fxercise 6.11. Derive from Eqs.(6.14a) and (6.14b) the relation Yf(gxﬂf)

" * * R . ,
=-[E-J +iwE'D - iwH *B] when r « {source-free subdomain ofﬁR3}. (This
relation is known as the electromagnetic complex power balance.)

kY

Exercise 6.12. Let § = Re[E(r) exp(-iwt)] x Re[H(r) exp(-iwt)] be the power

flow density (Poynting vector) of a sinusoidally in time varying electro-

magnetic field. Show that the time average 'over a single period T = 2n/w of

. . . *
S is given by <§?T = 3 Re(ExH ).
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Exercise 6.13. Use Eq.(6.15) to show that n*(ExH ) is continuous across the

boundary of an electromagnetically penetrable scattering object. (Hint:

observe that Bf(E?E%) = E%-(Exg) = E}(E%XE).)

. * .
Exercise 6.14. Use Eq.(6.16) to show that n+(EXH ) vanishes on the boundary

of an electrically impenetrable (i.e. perfectly conducting) scattering

object,

Exercise 6.15. Determine the constitutive matrix (cf.Eq.(6.26)) of the

medium present in the scattering object when this is isotropic with scalar
conductivity o, = OI(E)’ scalar permittivity e, = EI(E) and scalar perme-—

ability W= UI(E)'

Answer:
' 54- 9 0 E
D = € 0 H, .
B 0

Exercise 6.16. Show that if the medium of Exercise 6.15 is dissipative, we
have Re(cl) > 0, Im(el) > 0 .and Im(ul) > 0 at any r € Vl' (Hint: use the

results of Exercises 6.11 and 6.12 and observe that <zf§}T < 0 for a dis-

sipative medium.)

Exercise 6.17. Show that if the medium of Exercise 6.15 is lossless, we
have Re(Ol) = 0, Im(el) = 0 and Im(ul) =0 at any t € V]. (Hint: use the

results of Exercises 6.11 and 6.12 and obsérve‘that <Yf§7T = (0 for a loss-

less medium.)

Exercise 6. 18. Determine the state of polarlzatlon of the sinusoidally in

time varying electric-field strength Re[E(r) exp(-iwt)] when E = e exp(iy),
where e and Y are real.

Answer: linear.
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6.3 The plane wave as incident field =

In many applications the‘inéident field can, at least in the neighbourhood
of the 3cattering object, be approximated by a plane wave. Therefore, the
case of an incident plane wave is often considered in the theoretical
analysis of scattering problems. For generality as well as in view of some
applications in thg"fheory of diffraction radiation from a charged particle
E6;4], we shall include non-uniform plane waves in the discussion. Let o
,deﬁbte the complex unit vector in the "direction of propagation' of the

wave, then its electric- and its magnetic-field strengths are written as

(E, Hi} = {ei:
T -8

i : . 3
, 3'9? eXP(lkOE-E) when r ¢ R7, (6.29)

i i o L“:,
where e . and E.a‘are constant ‘complex vectors,

o=

ko = w(EOUO)f L (6.30)
and
ara =1, . (6.31)

Substitution of (6.29) in (6.14), together with (6.23) and (6.24), leads

to the following relatiOns‘begween g}‘g}a and E}a:
i i -
Zoe * By = 7_32, | (6.32a)
i i (6.32b)
Yog_ X e o _}}_9—’ .
9:2}2" 0, (6.32c)
wio- o | (6.32d
ey =% N .32d)
where
:
Zy = (ugleg) (6.33)
and
RGN | (6.36)
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The quantity Z.o can be regarded as the vectorial wave impedance of the

o>
plane wave and the quantlty YO— as its vectorial wave admittance

Next, we investigate the time- averaged power flow density <S >T in the
sinusoidally in time varying plane wave Re[{E 9 ) exp(-iwt) J. We obtain

(cf.Exercise 6.12)

S > =1 Re(e” x h ) exp[-2 Im(a) rl. : (6.35)
—oT - -2
. ,
For a uniform plane wave, o is a real unit vector. Then, the plane wave is
transverse with respect to its (real) direction of propagation, while its

time-averaged power flow density is a constant vector given by

§_ >, =} Re(e

T X E. ) (uniform plane wave). (6.36)

[o

. . i . .
On account of (6.32) alternative expressions for <§  >_ are in this case

given by
st s =1y (et el *y o (uniform plane wave) (6.37)
=aT *0=-a-o’= ’
or
i -1 i Ll *y o
<§_ﬁ>T ) ZO(E_E'E.Q ) a (uniform plane wave). (6.38)
EXERCISES

Exercise 6.19. Derive the relations of Eq.(6}32).

Exercise 6.20. Prove that Eqs.(6.36), (6.37) and (6.38) hold for a uniform

plane wave.

Exercise 6.21. Substitute a = Re(a) + i Im(a) in Eq.(6.31) and show that

from the resulting equation it follows that Re(a) *Re(a) - Im(o) *Im(a) =
and Re(o)*Im(a) =
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6.4 Properties of the scattered field in the far-field region

The unbounded subdomain of VO where all points are at a large distance
from the boundary surface S of the scattering object is'called the far-

~field region of the scattering configuration. The distance from a point

of observation to a point of the scattering object is called large if it
is large compared with (a) the maximum diameter of the scattering object,
(b) the wavelength of electromagnetic radiation in the medium surrounding
the scattﬁring object. (This wavelength is given by AO = 2Wco/w, with <y
o= (EOUO)_E') It can be shown (for a proof, see Section 6.6) that in the
far-field region the main contribution to the scattered field consists of

a radially propagating, expanding, spherical wave with an angularly depen-

dent amplitude. This spherical wave is called the far-field approximationof
the scattered field. The fact Ehat the spherical wave is an expanding one
(and not a contracting one) is in accordance with the principle of causal—v
ity. The electric- and the magnetic-field strengths of the scattered field

in the far-field region are written as
s s s s .
{E" (@), B (@} ~{e(®), h ()} exp(ikyr)/brr as r > =, (6.39)

in which r is given by (6.3), 8 by (6.4) and kO by (6.30). The angularly

dependent spherical-wave amplitudes Eé and Eé satisfy the following re-

lations
Zy8 x n° = e’ ~ (6.40a)
Y8 x e = 1’ (6.40b)
S
8e =0, (6.40c)
S R
8:h =0, . , (6.40d)

where ZO is given by (6.33) and YO by (6.34). Equation (6.40) can be
inferred from (6.14), together with (6.25)? if (6.39) is substituted in
these equations and only terms of order O(r—l) are retained. Comparison of
(6.40) with (6.32) shows that the properties of gé and Eé are the same as
those pertaining to a uniform plane wave propagating along g;

Y . . , s .
Next, we investigate the time-averaged power flow density <§_>T in the
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sinusoidally in time varying scattered field Re[{EF, EF} exp(-ipt)]. We

" obtain (cf.Exercise 6.12)

*

<§S>T = 1 Re(Es x ES ). (6.
Substitution of (6.39) in the right-hand side of (6.41) leads to the
expression for <§§>T in the far-field region

<§é> ~ 1 Re(gé x Eé*)/(Qﬂr)z as r > o, (6.

T

On account of (6.40),alternative expressions for <§§>T in the far-field

region are

YO(EF-ES*)Q/(4ﬂr)2 as r > o (6

A
5]
\%
4
=

and

A
W
\%
14
pot—

ZO(ES-BS*)Q/(Awr)Z as r - o, (6.

Equations (6.43) and (6.44) show that in the far-field region the time-
-averaged power flow density of the scattered wave is an outward radial
vector, i.e.'gj<§§>T is a non-negative quantity.

. _ . . S
We now introduce the radiation intensity I~ of the scattered wave

through the relation

§§S>T ~ Is(g)g/rz as r - w, for any B ¢ Q. (6.

The SI-unit of I° is watt/steradian (W/sr). On account of (6.42), (6.43)
and (6.44), 1° is given by either of the expressions

(1/3217) Rel (e® x 15*)-87

ja |
]

(17320%) ¥ (e ™)

I}

i

(1/327%) Zo (00 - (6.

The time-averaged total power <PS>T

41)

42)

.43)

4t

45)

46)

carried by the scattered field across

a closed surface completely surrounding the scattering object is given by
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<1>S>T = [f P_'<§S>T da, (6.47)

closed surface
completely surround-
ing the obstacle

where n denotes the unit vector along the outward normal to the surface of
integration. Since the medium in VO is assumed to be lossless, the result
obtained from (6.47) is independent of the particular surface that is
selected to carry out the integration. Two choices are of special interest.
In the first, we take the boundary surface of the scattering object as

surface of integration and obtain
<@g = [[gmr<ssy an " | (6.48)

In the second, we take as surface of integration a sphere with centre at
the origin and located in the far-field region. On account of (6.45) we

can write the result as
s s '
<Py = foI aq, : (6.49)
in which one of the expressions 6.46) for I° can be substituted.

In case the incident field is a uniform plane wave propagating in the
direction of the unit vector g_(cf.Section 6.3), it is customary to intro-

. - . 3 .
duce the (plane-wave) scattering cross—section o (8,a), given by

o(8,0) L 4m 1%(8) /ar<s” >

with 8 ¢ © and a ¢ Q, (6.50)
=o' T e i

as the quantity that typically compares the power flow in the scattered field
in the different directions with the power flow in the incident wave. In
(6.50), 1° is given by (6.46}, while g;<§éa>T directly follows from (6:36),
(6.37) or (6.38). The SI-unit of 6" is square metre (mz).

In several relations, the average of cs(ﬁ)g) taken over all directions

. . , . ]
of observation occurs. Denoting this quantity by o C have

o° 9L m 7 [ 0%8,0) dnce). (6.51)
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On account of (6.49) and (6.50), osu is also given by

S _ _.S oal »
o7, = <P >T/g_<§_ng. (6.52)

EXERCISES

Exercise 6.22. Derive Eq.(6.40) along the lines indicated in the text.

Exercise 6.23. Prove from Egs. (6.37), (6.38), (6.46) and (6.50) that ,
o°(8,0) = 4m) Le®(0) ™ @/’ et ) = um T n’ e p* (@ 1@t |
—_ — 2 — —_

and verify that the right-hand sides indeed are expressed in metre .

6.5 Source representatidns for the electromagnetic-field quantities

The basic tool in the integral-equation formulation of scattering problems
is a certain integral rglation that, for points of observation located in
a certain domain in spacé, leads to a source-type of integral represen-
tation for the electromagnetic-field quantities. The present section is

devoted to a discussion of integral relations of this kind.

We start with the situation where the electromagnetic-field quantities
are defined in a bounded subdomain V] of'Rg. The boundary of V1 ig the
closed surface S (Fig.6.5). S is assumed to be sufficiently regular, i.e.
the unit vector n along its outward normal is a piecewise continuous vector

function of position. The unbounded domain exterior to S is called VO. In

Fig.6.5. The bounded domain V] intertor to the closed surface S, for
which source-type of integral representations of the electromagnetic-—

-field quantities are derived.

view of later applications we assume that sources are present in V1 whose
action can be accounted for by volume-source distributions. The volume
densities of the "source currents" appear as source terms in the electro-

magnetic-field equations, which are written as
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VxH~J+ iw = ﬂév when r ¢ Ul’ (6.53a)

V x E - iwB =-—£?V when r € Vl’ ‘> (6.53b)
where

.iev = volume-source density of electric current,

EFV = volume-source density of magnetic current.

Taking the spatial Fourier transform (6.Al) of (6.53a) and (6.53b) and

applying (6.A5) we obtain the Fourier transformed electromagnetic-field

equations pertaining to the field defined in Vl

ik x H-3J+iwD =3+ 3, (6.54a)
ik x B - i0B = -3, - I (6.54b)
L2 =7 Tmy T 2
in which Eés and ETS are the Fourier transforms over S of the quantities
JéS =-nxH when E_é S ' (6.55)
and
m
E-S =nxE whenr e S, (6.56)

respectively. Note that in the right-hand sides of (6.55) and (6.56) the
limiting values of the quantities upon approaching S via Vl are to be taken.

The structure of (6.54a) and (6.54b) leads to the interpretation

e . .

5-5 = surface-source density of electric current,
m . .

J g = surface—-source density of magnetic current.

In order to solve E_and E_from (6.54a) and (6.54b), assuming that the
right-hand sides of these equations are known, we must have the constitu-
tive relations at our disposal. To illustrate the further method, we shall

proceed with the simple case where



J = oF,
D = cE,
B =y,

(6.57a)

(6.57Db)

(6.57¢)

in which the conductivity o, the permittivity € and the permeability u are

: .
constants, but may have complex values. Taking the spatial Fourier trans-

form of (6.57a)~(6.57c) we obviously arrive at

3- ok
5 - o,
5 -l

Substitution of (6.58a)-(6.58c) in (6.54a) and (6.54b) leads to

. ~ . ~ ~a ~e
k x - - =

l_ _I_I_ (O lwe)g' g_ A + i S’
ik x E - dwl = - @7 + T70).

(6.58a)
(6.58b)

(6.58¢c)

(6.59a)

(6.59b)

From these equations we want to solve E and H. To determine E we eliminate

E from (6.59a) and (6.59b), use the vectog}al identity
ik (ik x ) = ik(ik-E) + (kk) E

and observe fhat from (6.59a) it follows that
~(o - iwe) ikeE = ikf{iév + 3%).

We then arrive at
[kek - (0 - ime)iquE = iwu(iev + i

. il ST~ ki

+ (o - o) ik G5, + 5°

. ~m
S)] ik x (J v +

(6.60)

(6.61)

(6.62)
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A similar procedure leads to

)

[kek - (o - iwediondH = —(o - iwe) @ + Iy

. il T ] ~m ; ~e ~e “
- (op) " iklike (T, + T O1 + ik x Ty + I7o)- (6.63)

The expressions that result when Fourier inversion is applied to the right-
~hand sides of (6.62) and (6.63) are fairly complicated. Their structure is
made somewhat more transparant if judiciously chosen auxiliaryquantities

are introduced. In this respect we consider the functions

‘def

T el ek - (0 - dwe)iwn]] (6.64)
and

~e,m def ~ ~e,m :

g SR g (6.65)

that occur in the expressions for E.and E, With the aid of (6.64) and

(6.65) we can write

~e

B = dan(@, ¢ 5 + (o - dwe) | ik[ike (B, + §°) 7
E = 1wp Iy I o 1we l-l—-(—-V L
- ik x (@ + 1Y) (6.66)
and
¥ . ~m ~moy B PR PR ~m
BH=-(c - dwe)(@y + T ) - (o)~ ik[ik-(T, + T°)]
+ ik x (jjev + 1%, (6.67)

S v

The expression for G arises from the application of a spatial Fourier

transform to the inhomogeneous Helmholtz equation
[VeV + (0 - iwe)iwplG = -8(x), (6.68)

where §(r) denotes the three-dimensional unit pulse operating at r = 0,
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provided that the Fourier transforn (B-AI) is extended over all space and
the contribution from the "sphere at infinity" vanishes in (6.A5). Either
from standard theory pertaining to (6.68) or by evaluating the Fourier

inversion integral with the right-hand side of (6.64) as spatial Fourier

transform,we obtain

) - 1
¢ = (4n|z])7! explif{(o - iwe)iwu}?|x|] for all r = 0, (6.69)
1 L : :
where Re{...}? > 0 and Im{...}* = 0 for the medium under consideration,
and w > 0. The right-hand side of (6.69) is a scalar spherical wave

expanding from the point source; it is also called the free-space Green's

function of the three—dimensional scalar Helmholtz equation. Note that
G(r) shows an exponential decay as |r| -~ = as long as ¢ > 0, and hence the
procedure of applying the spatial Fourier transform to (6.68) is justified.

Next we investigate the expressions for the vector potentials that

have been defined in (6.65). Since they are the products of two spatial
Fourier transforms, they correspond with a convolution in r-space. We
observe that the factors E;’m arise from a Fourier transform extended over
Vl’ the factors Eg’m from a Fourier transform extended over S, while G is
the Fourier transform of G extended over all space. Consequently, we should

identify f in (6.A8) with J and g with G. This leads to

e,m e,m . 3

I (x) = fffVIG(EfEf)gv (x")av(z") with r € R (6.70)
and

1™ = [[goGrr)g™ (DA withr e B (6.71)
On account of (6.69), G(r-r') is given by

-1 - . . 1
G(x-r') = (4m|r-r'|) "expli{(o - iwe)iwn}?|r-r'|]
for all r = r', (6.72)
in which
2 L
x=x'] = [x")? + (y-y")° + (2-2")%7? (6.73)

<
-~
e
t+
j=nl
—
[
Not—
%
(@]
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Finally, the factors ik in the right-hand sides of (6.66) and (6.67)
have to be handled. In this respect we refer to (6.AS5) and observe that
upon Fourier inversion ik corresponds with the operator V in case the
relevant Fourier transform is extended over all space and on the condition
that the contribution from the "sphere at infinity" vanishes. As we have
seen, this situation applies-to G; as (6.70) and (6.71) show, it also
applies to Eszz. On account of (6.A3), Fourier inversion of (6.66) and
(6.67) then leads to

LonlI (@) + 15007 + (0 =~ dwe) ' {r-01% (@) + 15,01}

- U M@ + 1M ()] = {1, 4, 0 E®

v} ) » (6.74)

when r « {Vl, S, 0

and
] m m i _lv{v-[Hm (r) + ot (r) 1}
~{(o - 1we)[£_v(£) + E_S(E)] - (iwu) V{V 2y = g =
+ ¥ x [0° () + 1% ()1 = {1, 4, 0} H(®)
when r e {V,, S, V.1 (6.75)

in which (6.70) and (6.71) are to be substituted.

When r e Vl’ the left-hand side of (6.74) is an integral representation
for the electric-field strength and the left-hand side of (6.75) an
integral representation for the magnetic-field strength. Obviously,
integral representations for E(r) and H(r) for all '£_€:R3 result when we
replace Vl in (6.70) byiR3 and omit Eés and EFS in the left-hand sides of
(6.74) and (6.75). In view of the properties of G (cf.(6.69)), the re-

sulting electromagnetic field, consists of a superposition of spherical

waves that expand from each elementary volume source,

In order to save some clerical work when the expressions (6.74) and (6.75)
are used on a number of occasions, we devise a notation which is somewhere
in between an abstract opérator notation and the long-hand notation to
which (6.74) and (6.75), in conjunction with (6.70), (6.71) and (6.72)

give rise. We introduce the column matrix [Jyd of the volume currents
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J
(g 3=1]"" . (6.76)

Fig. 6.5)

g1=|"5|=1| —~ (6.77)
-—, m

and the column matrix F of the two field quantities E and B

E
[F] = . (6.73)
u :

Note that the elements of the matrices (6.76), (6.77) and (6.78) are vector
.. . 3 . .

quantities in R . Further we introduce the square matrix [Lj of the elec-

tromagnetic Green's tensors

Lee . Lem

el -] 1, (6.79)
T T

whose elements are defined through the following relations

%) 3% ")

)

iwy G(x-r")I (x")

* (0 - dee)  WTTEGEHISED I, (6.80a)
I (r-r") 3" = - x [6G-r)IM @) ], (6.80b)
@ 3%x") = ¥ x [6(z-x)I%@h)], | (6.80c)
)3 = (0 - iwe)e(x-r)I™x") |

: (i\wu)_lz{z-EG(gz')gm(;_')]}. C (6.800)

Note that the elements of (6.79) are tensors of rank two inIRB. With the
- aid of (6.76)-(6.80) we can rewrite (6.74) and (6.75) as the single matrix

equation

[[]y ILGx")1Ta, @) 1avE") + [f [L(-r") 1[I (x")IdA(x")
1 B - ST~ 5= )
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= {1, §, 0Y[F(@)] whenz e {V, S, V,}. (6.81)

Notationally, (6.81) still enables us to indicate clearly to which domain
and to which field (incident, scattered or total field) the equation is

applied, at the same time having reached a certain degree of compactness.

In several cases integral representations for E(r) and H(r) are needed when
T e VO. These follow from applying the procédure outlined above to the
domain Vn. It is understood that in this case the contribution from the
"sphere at infini;y" to thé‘surface integrals vanishes. Also, one should
take care in handling expressions witﬁ n and eitﬁer let n point away from

VO or change the sign in the expressions for Eé and H g

EXERCISES

Exercise 6.24. Let the sinusoidally in time varying scalar wave function

Re[U(r) exp(-iwt)] be defined in the configuration shown in Fig.6.5 and
assume that U satisfies the inhomogeneous Helmholtz equation
(V¥ + wz/cz)U = --QV when t € Vl' Apply the sgpatial Fourier transform

extended over Vl to this equation and determine the resulting equation for

U.
tnswer: (k- w /e = §, + Qg + ik-Bg, in which Qg = [[gln(x)-TU(D)]
exp(-ik-r) dA(z) and By = [[on()U()exp(-ikr) dA(r).

Exercise 6.25. Obtain the integral relation pertaining to U defined in

Exercise 6.24, by applying Fourier inversion to the expression U = SV + SS
I o B~ ~ vy Ly 2, 2]

+ 1&_!5, where @V = GQV, @S = GQS and ES = Ggs with G = (k*k - w /c")

Answer: o (r) + @ (r) + VoY (r) = {1, 4, 0} U(x) whenr ¢ {V , S, V }, in

1’
which @ (r) fffv G(x-r') QV(r ) dv(z'), ¢ (r) ffoG(r—r n(r'): V U(r )]

'dA(r ) and Y (r) = ffSG(r r'In(r")u(c") dA(r ), with G = (4ﬂ|r—r'|)
exp[l(w/c)lzjg | 3.

W

6.6 Integral relations for the scattered field

The theory developed in Section 6.5 will now be employed to derive suitable
integral relations for the scattered field. By virtue of (6.14), Table 6.1

and (6.25), E° and gé satisfy the electromagnetic—field equations
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¥ x B® + fweE° = 0 when T € Uy, (6.82a)
v x EF - iwuoﬂs =0 whenrt ¢ VO, (6.82b)

while by virtue of (6.14), Table 6.1, (6.27) and (6.28) we have, for

penetrable objects,

v x E§f+ iwsogé = £4 - iwgq when r € Vl’ (6.83a)

A

z X _ELS - iwuogs = iwuoﬁl when I e Vl- (6-83b)

Equation (6.83) has the advantage that the structure of its left-hand side
is the same as that of (6.32).

With reference to the constitutive relations (6.57), the left-hand'
side of (6.53) reduces to the common left-hand sides of (6.82) and (6.83)
provided that o approaches zero through positive values, e is replaced by

ey and u by uy: After ‘these changes in the coefficients have been made,

0
we first apply (6.81) to the domain VO and to the scattered field. In doing

so, we shall omit the contribution from the "sphere at infinity" to the
surface integral by considering the lossless medium present in VO to be the
limiting case of a dissipative medium with non-vanishing losses. (If this
procedure is not followed, the case ¢ = 0 requires an extra limiting con-
dition to be imposed on Eé and E? as r + »; this condition is called the

radiation condition [6.5].) On account of (6.82), (6.81) then leads to
- et . 5 '
BB NG AP RN NG APRIE EXCAD
= {1, 4, 0} [F° ()] when r ¢ {Vy, S, V1, (6.84)
in which [20(575')] is obtained by replacing G(x-r') in (6.80) by

5

G, (r-r') = (éﬂlgfzfl)_lexp[iw(eouo)%|£:£']], (6.85)

]

[3°.]

g - (6.86)
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and (cf.(6.78))
s -
(F°1 = . { (6.87)
- H . ‘

| =

Amongst others, (6.84) expresses the scattered field in VO in terms of the
limiting values of the tangential parts of the electric— and the magnetic-
field strengths of the scattered field on 8.

Next, we apply (6.81) to the domain V1 and the incident field. By virtue
of (6.14), Table 6.1, (6.23) and (6.24) we have

VxH + iweog =0  whenr ¢ Vl’ (6.88a)
v x E' - fop E' = 0 whe v T (6.88
VxE wpg™ = 0w en r e V. .88b)

Equation (6.81) then leads to

ffS[;O(g-g;)]-[giS(g')] dA(x'")

= {1, 3, 0} EE}(E)] when r « {V],'S, VO}, (6.89)
in which
i "P_xﬂi
(31 = i (6.90)
n<E
and
o
(F 1= il : (6.91)
H

Subtraction of (6.89) from (6.84) yields
-ffS[_f__O(_r_-g')]-[_{5’0(5'2\] dA(z")

- (%@, HE@I - [F I, - [P
when r e {UO, S, V]}, (6.92)

in which

[gs,oj B . : (6.93)
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When r « VO’ (6.92) (as well as (6.84)) can be used as an integral repre-
sentation for the scattered field, but now the tangential parts of the
electric— and the magnetic-field strengths of the total field upon ap-
proaching S via VO occur in the integral over S. Especially when explicit
boundary conditions are known to hold on S, (6.92) may have certain
advantages over (6.84).

For scattering objects that are penetrable, one can also apply (6.81) to
the scattered field in V1 and use (6.83).’Wh§n the resulting expression is
added to (6.84), the .surface integrals cancel by virtue of the continuity
of n X EF and é.x ES across S (this is a consequence of (6.15) together

. o i i .
with the continuity of n X E} and n X H" across S) and we are left with

IHV]E;()(g—;_'n-tfv(g); av(z') = {[F°(0)], 4[F, ()] + 4[F ()]

~ P @1, (P01} whenx e V), S, Vgl (6.94)
in which
s i1 - iUL)P—I
3,°1= |7, : (6.95)
~iupH,

Equation (6.94) expresses the scattered field at any point in space not on
S in terms of the countrast quantities that make the scattering object

differ from its surroundings.

Representations for the spherical-wave amplitudes of the scattered field in

the far-field regton

In particular, (6.84), (6.92) and (6.94) can be used to obtain representa-
tions for the angularly depen&ent spherical-wave amplitudes of the scat-
tered field in the far—field region. In the surface integrals over S or the
volume integrals over V1 we then let !£J+~w and use the results (6.B8),
(6.B14) and (6.B15) of Appendix B. Application of this procedure to (6.84)

and comparison of the resulting expressions with (6.39) yields

[£5(8)] = = [yy(®)1-[F° (k@)1 with 8 e g, (6.96)



where

Lt
il

and

The elements of (6.98) follow from the relations (cf.(6.80))

ee ~e

«J = 1
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£

Es

[ ee em
L %
me mm
H X

L

iwe (3" - 0(8-3M 1.

In a similar way (6.92) leads to

[£°(8) 3
and (6.94) to

[£°(8)]

i

[}

- [lo@]'[zs,o(koi)] with 8 €

[;O(@]'EESV(ROQ)] “with 8 ¢ Q.

(6.97)

(6.98)

(6.99a)

(6.99b)

(6.99¢)

(6.99d)

(6.100)

(6.101)

: ' .o s s
Because of the structure of [lﬂj’ the quantities e and h that are deter-

mined from (6.96), (6.100) or (6.101) satisfy the relations (6.40) (cf.

Exercise 6.26).

EXERCISES

Fxercise 6.26. Show with the aid of Eq.(6.99) that the following relations




- 6.32 -

6.7 Reciprocity properties of the spherical-wave amplitudes of the scattered

field in the far—field region for plane-wave scattering

In this section we investigate the reciprocity properties of the spherical-
-wave amplitudes of the scattered field in the far-field region in case the
incident field is a uniform plane wave..In .the frequency-domain reciprocity
relation two different electromagnetic states with the same angular fre- -
quency occur. Let the superscripts A and B indicate the electromagnetic

field quantities in the two states,then the électromagnetic field reciproqity
relation (also called Lorentz's theorem) states that for any bounded domain

V with boundary surface S we have
[gn (E*x B®) da = [[gm (E°x B da, | (6.102)

provided that no sources are present in V (in which case (6.14) applies)

and that

b B et B - pur®oBt - g8 g® - 1upBeo® - o8P

at all r e V. (6.103)

We first apply (6.102) to the scattered fields and to the domain bounded
internally by S of Fig.6.1 and externally by the sphere

S, = {x]r ¢, ror = 4%} ‘ (6.104)

As in this situation (6.103) is obviously satisfied (cf.(6.25)), we obtain

[lgn @A 8%P - 5P < 554 au

B B

= [/g 0 &> x 558 - 58 « 5% aa. (6.105)
, \

However, on account of (6.39) we have

A B B

XI_IS’ —’ES’ ><£I_s,A) dA

[[q 8- E™
‘ SA

_ (4ﬂ)_2exp(2ikOA)fo g;(eS’A « Eé,B ~ e N hs,A) a0

+ vanishing terms as A + o, (6.106)
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In view of (6.40), however

S,A
IO Sl I OO (6.107)
and hence, (6.106) leads to
ffs 6- %54 x 558 ~ £%°F x 55" aa = 0. (6.108)

Now, the left-hand side of (6.105) is independent of A. This fact, combined
with (6.108), yields

[fgme E*4% 558 - 258 < 554 aa = 0. (6.109)

Secondly, we apply (6.102) to the incident fields and to the domain V1 of
Fig.6.1. In view of the definition of incident field, (6.103) is again

satisfied and we obtain .

LA 4 _ , A
,}ffg&'@,l’ x 1B - g1P x gty qa = 0 (6.110)

Using the results of Table 6.1 it then follows from (6.109) and (6.110)
that

B i i
‘IIS‘H.‘(EAOX 0, - EBo « EAO) dA = ”S e (El,A>< Es,B _ Es,B o El’A)dA

s, A 1,B _ E},B « Eé,A) dA. (6.111)

E
+ ffs n.(E
Next, (6.102) is applied to the total fields in the scattering object and
to the domain V,. We now require that -(6.103) is satisfied throughout Vl

i
and then obtain

[lgnih x 88 - | ¢ g ) da = 0. (6.112)
By virtue of the boundary conditions across S ((6.15) for a penetrable
object), however, the left-hand side of (6.111) equals the left-hand

side of (6.112) and hence

s,B s,B

ffgne 92 B3P - E5P wmbH) aa
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= ffg @b ®x gt - PR an. (6.113)

For a perfectly conducting object or a perfectly conducting screen, (6.113)
directly follows from (6.111) by invoking the boﬁndary conditions (6.16)
and (6.19), respectively. Note that (6.113) holds for arbitrary incident
fields.

Uniform plane waves as incident fields

We now take the incident fields to be the uniform plane waves (cf.Section
6.3.)

i,A _1,A

E0h M - e

o }eyp(‘k a-r) (6.114)

and

i,B ,By i i . : -

{E7’7, H77} = {E'ﬁfh ﬁ? GXP(lkoﬁ_E), (6.115)
propagating in the directions of the unit vectors o and B, respectively.
For this kind of excitation of the scattering object, we henceforth write
{gfd,gfa} in stead of {EF’A, EF’A} and {EFB,EFB}in stead of {E?’B,Eé’B}.
Substituting (6.114) in the left-hand side of (6.113), using (6.32) and

comparing the result with (6.96), we observe that

_11 ( q) (6.116)

Similarly, substituting (6.115) in the right-hand side of (6.113), using

(6.32) and comparing the result with (6.96), we observe that

x h' ) exp(ik

[fgnde®y x B - E° x b, oB'L) da
= ~Gung) e’ e’ (B = (iwgo)‘lh}e,gsa(fg). (6.117)

_ci' ‘ESB('E) = Ei -e® (-8) (6.118)



and

i s i s .
*h” _(-a) = h™ +h" (-B). .
By h () = hYen’ () (6.119)
‘Equacions (6.118) and (6.119) constitute the reciprocity-relations for
plane-wave scattering [6.6]. Fig.6.6 illustrates the interrelation between

"the different directions in these reciprocity relations.

incident incident

o -8

O \field A field B / =
scattered d -ﬁ scattered

field B “ field A

Fig.6.6. Interrelation between the different dirvections in the

reciprocity relation for plane-wave scattering.

EXERCISES

Exercise 6.27. If the electromagnetic properties of a medium are such that

Eq. (6.103) holds when the medium in State A is identical to the medium in
State B, this medium is called electromagnetically reciprocal. Show‘that
a'medium whose constitutive relations are J = oE, 2:= eE and B = uH is
electromagnetically reciprocal.

A

Exercise 6.28. Verify Eqs.(6.116) and (6.117).

6.8 The extinction cross—section theorem (optical theorem)

The extinction cross—section theorem or "optical theorem" relates, for

nlane-wave scattering, the time—~averaged power both absorbed and scattered



- 6.36 -

by a scattering object to the spheriéél—wave amplitude of the scattered
field in the far-field region, observed in the forward direction. The time-

-averaged power absorbed by the scattering object is given by (note that n

points away from V] in Fig.6.1)
P> = -4 Re[[[, n+(E, x H,") dA] (6.120)
T 7?2 ‘s 2% X Zg : ’

In the right-hand side of (6.120) we use the results of Table 6.1 and

obtain

<Pa>T + <PS>T = —% Re[fﬁg n'(_li:_l X El*) dA]

- drel[f B x B+ E° x BT anl, (6.121)

in which (6.48) has been used and where we have used the property that the
real part of a complex quantity is equal to the real part of its complex
conjugate. Since the medium in which the incident field has been generated

is assumed to be lossless, we have
} Re([[, n(E" x H )dAJ = 0 (6.122)

as the incident field has no sources in V]. Substitution of (6.122) in

(6.121) yields

<Pa> + <PS> = - Re[L& E(E_* x H + ES X El*) dA]. (6.123)

Equation (6.123) holds for an arbitrary incident field.

Uniform plane wave as incident field

i

We now take the incident field to be the uniform plane wave (cf.Section 6.3)

{EL,B') = (e ,h" } exp(ikpa-1), (6.124)

o’—
propagating in the direction of the unit vector a. For this kind of

. . . . . S .
excitation of the scattering object we henceforth write {E-a’ Eéa} in stead

of {Eé, Eé}. Substituting (6.124) in the right-hand side of (6.123). using
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(6.32) and comparing the result with (6.96), we observe that

ffS E-"(_e_lu* x Esoc + Esu X El *)exp(-ikog-z)dA

-1,1 *

-1 i *‘EF (@ = _(ing) h

= -(iwny) e o 'ESE(EL_)- (6.125)

Equations (6.123) and (6.125) lead to the result

Im[(muo)_]g} *

Nol—

<Pa>T + <PS>T e’ ()]

|Q
|

1

I
[N

nt *® (@1, (6.126)

ol

Im[(weo)_

. : ' . . a .
In (6.126) we next introduce the absorption cross—section o . defined as

a def

o}

a i =
<P >T/EL-.<§- E'>T (6.127)

. . s - .
and the average scattering cross-section o glven by (cf.(6.52))

s _ .8 Lol .
o, = <P >T[g <§ ST (6.128)

Since (cf.(6.37) and (6.38))

i 1%

¢ - = 1 . = 1 1 . i *
we finally obtain
-1 s i* s
R . 1 Ing_g. g_gﬁg)] 1 Imlh o E.g‘a)]
[e] g + O g = — i . T = k— hi 'hi % (6.130)
Yo 2afa 0 ~a-a

In (6.130) the sum of oau and Osa occurs; this quantity is also known as

the extinction cross—section of the scattering object. Therefore, (6.130)

is called the extinction crosd-section theorem [6.7, 6.8]. (In the quantum-
mechanical theory of particle scattering the corresponding theorem is known

as the "optical theorem'.)
EXERCISES

Exercise 6.29. Verify Eq. (6.125).

Exercise 6.30. Show that for a perfectly conducting scattering object or

for a perfectly conducting screen we have <pf> = 0 and hence o® = 0.

T
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6.9 Integral-equation formulation of fhe scattering by a penetrable object

The integral-equation formulation of the scattering by a penetrable object

involves the following steps to be carried out consecutively.

(1) In (6.94) the point r is chosen in Vl' Using the results of Table 6.1 in
the right-hand side, the equation is rewritten as

i

HIV [Ly(x-x)I-03°% ("] av(z")

= [F,(®1 - [F'(@] whenrel, (6.131)
in which
J. —iwP J, - iwD, + iwe.E
31 = L "1. - =11 . (6.132)
"10)].10_] —1w§1+ iwuo_}ll

(2) After the constitutive matrix in (6.26) has been specified for the
object under consideration we eliminate Jl, 94 and B1 from (6.26) and
L (6.131). A system of differential-integral equations then results w1th
E (r) and H (r) (or [F (r)1) with r € V as unknown functions and

E (r) and H (r)(or [F (r)]) with r e V as kuown functions.

(3) By some method, the system of differential-integral equations is solved
(for the numerical techniques that are available, we refer to Section
6.13).

(4) Using the calculated values of EJ(E) and Eq(f) for r « Vl’ we deter-
mine 24(5)’ El(z) and EJ(E) for r « U] with the aid of (6.26) and from
these values calculate [gév].

(5) The calculated value of\[J ] is used in (6.94) to calculate the
scattered field anywhere 1niB.\S When r € V this involves the numer-—
ical evaluation of the volume integral over V]; when r « VI’ the
scattered field is far more easily calculated by subtracting the known
values of the incident field from the calculated values of the total

field.

It is observed that the system of differential-integral equations (6.131)



uncouples into two separate differential-integral equations for E, or H»
respectively, in case the scattering object shows either no magnetic or

no electric contrast with its surroundings.

EXERCISES

Exercise 6.31. Express [EéV] in Eq.(6.131) in terms of E] and H, for a

scattering object whose constitutive relations are J,@) = o, (x) EJ(E),
D, () = ¢, (ME @, B () = () H (x).
Answer:
~ [o,(x) - iwle (@) - €9 HE, ()
[i V(E):l = '(;:;
~fofu, (@) - b tH, ()

6.10 Integral-equation formulation of the scattering by an electrically

impenetraBle (perfectly conducting) object

The integral-equation formulation of the scattering by an electrically

impenetrable (perfectly conducting) object runs along the following lines.

(1) In (6.92) the point r is chosen on S. On the resulting equation we

perform the operation EKE) X ... and write the result as

n(x) x [[glLoCr)1Ig o(x)] dA")

0 1 0 1

= 3 [Jo (] - (gt (r)] whenr ¢ S, (6.133)
3,0°% J gl r
-1 0 -1 0
in which kY
._—EXEOT
[J, A1 = (6.134)
—S,0 0 x E
. L__ E,
and
_ e
i T x E}
EQ_S] = i . (6.135)
~ |mxE |




(2)
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On account of the boundary condition (6.16), however, the magnetic
surface-current density on S vanishes and the scattering object shows

no magnetic contrast with its surroundings. As a consequence, the

system of differential-integral equations (6.133) separates into

-n(x) x [f S;eeoq—g)‘{-g(;_') x H(x')} da(z')

= -n(x) x E'(x) when r ¢ § 5 (6.136)
and

n(x) x [[qIngr) {-n(x’) x Hy(z')} dalx")

= § n(r) x EO(E) = n(r) xkg}(z) when r € S, (6.137)

respectively. Either (6.136) or (6.137) can be used to solve the

scattering problem. In both equations,_ies 0 = -n % EO occurs as
b

unknown function.

(3) By some method, either (6.136) or (6.137) is solved. (For the numerical
techniques that are available, we refer to Section 6.13.)
(4) The calculated wvalue oflgéo 0 is used in (6.92) with r € VO to calcu—
5, —
late the scattered field anywhere in the domain outside the scattering
object.
EXERCISES

Exercise 6.32. Verify that 0 1

=]
x
|t
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6.11 Integral-equation formulation of the scattering by a homogeneous,

penetrable object

Tn this section we discuss the scattering by a homogeneous, penetrable

object whose constitutive relations are
= = = 6.1 8
J o,E., D S]EJ’ §4 UIEJ’ (6.138)

in which 0], El and Hy are constants that may have complex values. Now, a
homogeneous,penetrable scattering object is a special case of a penetrable
object in general and therefore, the theory developed in Section 6.9 re-
mains valid. In the present case, however, it is also possible to formulate
the problem in terms of integréy equations that hold on the boundary
surface S of the scattering object. For this purpose, we need the relations
that follow from (6.81) when this equation is applied to the total field in
the domain Vl occupied by the scattering object, while for the electromag-
netic Green's tensors we take the ones pertaining to a medium with conduc-

tivity S permittivity e, and permeability M- Since in

1

Vv x Eq - (01 - iwe]) E] = 0, (6.139a)

= 0, (6.139b)

vVxE - iy E] Y

1
no volume currents occur, (6.81) leads to
1Y T 1 '
I, (emx )] [Jg, @] da)

= {1, 4, 0} [F,(x)] whenr e (V, S, V1, (6.140)

0
in whiéh [Lq(zfzf)] is obtained by replacing G(r-r') in (6.80) by

G (Efgf)b= (4ﬁ|£j£f|)—];%p(ik]|£:£'|), : (6.141)
with

1 1
k1= w(e]ul)z(l - o]/iwel)z, (6.142)

while (cf.(6.77))’
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I X.E]
Lgs 1] = _ (6.143)
n x E
T
and (cf.(6.78))
E
(7,1 = : (6.144)
. H

-1
Equation (6.140) is combined with (6.92) to lead to the desired integral-
—equation formulation. On account of the bodndary conditions (6.15) we have
[gs O] = [gﬁ ]]. To exhibit this property, we shall henceforth write
b b
-n x H -n X H]

3= — | = : | (6.145)
n x E n X E4

The relation between scattered field and the contrast of the scattering
object with its surroundings is brought into the formulas when (6.140) 1is

added to (6.92). This yields
[Igfin, e = [r e 1[I dA")
= (@), HEy @] + HE, @1 - F @], FP@D)

when r e {VO, S, Vl}' (6.146)

For the kind of scatterlng object under con31derat10n the 1eft—hand side of
(6. 146) therefore yields a representation for the 'scattered field at any

r eR \S, the contrast of the object belng manifest in [Lq(E‘E_)]
—[&f{EW]. -

The integral-equation formulation of the scattering by a homogeneous,

penetrable object runs along the following lines.

(D In (6.92) and (6.140) the point r is chosen on S. On the resulting

equations we perform the operation n(r) x ... and write the result as

n(r) x ffS[F (x-r')1-[3(x")] dA(r )

0 1 0 1 .
=3 [J.(x)] - [fg@]mmges (6.147)
-1 o) 8T | -1 0




(2)

(3)

(4)

- 6,43 -

and

n(r) x ffstgq(Efzf)]'fgs(ff)]dA(E')

0 1

P

[Js(r)] when r ¢ S. (6.148)
-1 0 T -

Addition of (6.]&7) and (6.148) yields

n(x) * f[gfL, "] ~ (L")} [T da)

0 1 o 1 . ‘
= [J.(r)] - [J* (r)] whenr e S, (6.149)
-1 o T -1 o 857 -

which also follows from (6.146).

In the integral~equations’k6;147), (6.148) and (6.149), EQS] is the
unknown quantity. Now, (6.147) and (6.148) together constitute a number
of equatibgs that is twice as large as the number of unknown quantitieé.
Therefore, an appropriate number of equationms is to be selected from
both (6.147) and (6.148) to solve [gS]. Equation (6.149) éan serve as
such, but it is not the only possibility.

By some method, [gs] is calculated. (For the relevant techniques we
refer to Section 6.13.)
The calculated value of [gS] is used in (6.92) with r « VO to calculate
the scattered field anywhere in the domain outside the scattering
object and in (6.140) with r « Vl to calculate the total field anywhere
in the scattering object;'Also, the calculated value of igs] can be
substituted in (6.146) to calculate the scattered field anywhére in

3
R\S.

W

6.12 Integral-equation formulation of the scattering by a perfectly

conducting screen

When the scattering object is a screen, the domain occupied by it reduces

. . . - + .
to a lamina. The two sides of the lamina are called S and S , respectively

(Fig.6.4). The left-hand side of (6.92) then reduces to a surface integral

extended over S and S+, while by virtue of the boundary conditions (6.19)
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_E—(E') x E.O—(E')

O(Ef)] when r' ¢ S (6.150)

o

and

(') x By @) .
when r' ¢ S . (6.151)

O(_r_')]

0
i =

For any r « VO we combine the two surface integrals to an integral over one

of the faces of the screen and obtain

[Jgr 26z ) R(x'") da")

=E(x) whenrelV, . (6.152)
and

ffS_L o(z')R(x") dA(z")

- 1°(x) whenr e Vg, (6.153)
in which

K(r") = {n(x") x Eo(ff)}gjes- + {n(z") x go(gf)}£f€s+ (6.154)

is the equivalent volume-source electric—current density that generates the
scattered field and is concentrated in thegpérfectly conducting lamina. The
left-hand side of (6.152) has a tangentiai part that is continuous when r
crosses the screen and hence, reusing the bbundary conditions (6.19) we

arrive at

n (l’) XN t T eO r- ')7§(3:_')5A(_g_')=-p_i(£) xgi(z) whenzesi. (6.155)
Note that {6.155) constitutes a 81nple equation as the incident field is
continuous across the screen and Ef = 73 (Fig.6.4). The tangential part
of the left-hand side of (6.153) on the other hand is discontinuous when

r crosses the screen. Its properties are such that when the operation

EQE) X ...is performed and the two expressions for r e S™ and T € S+ are

added, we obtain-
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K@) = (0@ x E@I, ¢ * 2@ B ¢ (6.156)

Again using the fact that the incident field is continuous across the

screen, it follows that
s s
{n(x) x H (x) }EeS_ + {n(r) x H (1) }£€S+
= {n(r) x Eo(g)}EES— + {n(r) x 30(5)}563‘“' (6.157)
Equations (6.156), (6.157) and (6.154) together are consistent, but do not
lead to a relation from which K can be determined. This feature is common
to all scattering problems where a scattering object of vanishing thick-

ness is involved [6.9].

The integral-equation formulation for the scattering problem under consid-

eration then runs as follows.

(1) Equation (6.155) is used to calculate K. (For the relevant techniques

we refer to Sectiom 6.13.)

(2) The calculated value of K is used in (6.152) and (6.153) to calculate
the.scattered field anywhere in VO.

6.13 The method of moments

As we have seen in Sections 6.9, 6.10, 6.11 and 6.12, the major problem

in the integral-equation formulation of scattering problems is to solve the
relevant integral equation (Eqs. (6.131), (6.136) of (6.137), an appropri-
(6.147) and (6.148), and (6.155), respective-

1ly). Except for the very few configurations where analytical techniques are

ate number of equations from“
applicable, the solution of the integral-equations has to be obtained by
numerical methods. In practice, the latter will have to be implemented on
a high~speed digital computer. The most wide-spread technique in this
respect is the method of moments ([6.10]1, [6.11]). To elucidate the method
we select the integral equation (6.131) which is repeated here for con-

venience:
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s

fffV][Lo(E‘f_')]'fi g1 avie")

= [F,(®)1 - [E'@3] whenr eV,. (6.158)
The different steps of the procedure are discussed below.

(1) A suitable, complete, sequence of expansion functions {[ﬁn(g)]} is

selected to serve as a basis for the exﬁansion of the unknown vector
[54(5)]' The vectors [;nﬂz)] are defined for r ¢ Vl' The "complete-

_ness" implies that [E](E)] can be represented as
[F, ()1 =) X [f ()] whenr eV, (6.159)

provided that the sequence of expansion coefficients {Xn} has been

chosen properly.
(2) Using (6.159) and the constitutive matrix for the scattering object

. . . . s . .
under consideration, we obtain an expansion for [J V] which we write

as
[QSV(E)] =.Zn Xn[in(£)1 when r e Vl’ (6.160)

where [in(z)] directly follows from [ﬁﬂ({)] and the constitutive

coefficients.

(3) Next, a suitable sequence of weighting functions {[Eﬁ(f)]}is chosen.
The vectors [w (r)] are defined for r e V . They are used to "weight"
the integral equation (6.158) over the domain V]. The weighting proce-
dure implies that the condition for”(6.158) to hold for any r € V] is
replaced by

[f], T ()1 dV(x)-[left-hand side of (6.158)]
I

= fff.v [w (£)] dV(z)-[right-hand side of (6.158)] for all m. (6.161)
1




(4)

(5)
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The weighting procedure (6.161) and the expansiohs (6.159) and (6.160)

are combined to lead to the following system of linear, algebraic

equations
. Byn ¥n = 1o Bon %0~ Ym for all m, (6.162)
Whgre
Ao fffv [w (r)] dv(x)- mv [Ly(e-x") 105 (£ av(z"), (6.163)
B o = ”fvl[y-m(-r—)]’[ﬁn(ﬁ)] av(z), | | (6.164)
Y= fffvl[ym(z)]-[gi(E):]E}‘dV(E). (6.165)

Equation. (6.162) replaces the integral equation (6.158). The geometry

and the contrast of the scattering object with its surroundings reflect

Ls
themselves in Am o The coefficients Bm 0 exclusively depend on the
b >

choice of expansion and weighting functions. Finally, the coefficients

Ym'characterize the way in which the scattering object is excited.

The first step in the numerical procedure consists of computing Am 0’
b

B and Ym. This computation only involves numerical integrations over
b
the domain V- Sometimes it is advantageous to use spatial Fourier

transforms on this occasion (cf.Section 6.5). Let us write

(Ly(zz) ] = (ZW)—3fff_1§“spaCe expliks (zr) HE (1 dV(l)  (6.166)

and introduce

.[Eﬂ(k)] def fffv exp (- 1k~r)[f (r)] dv(x), (61167)
EROIE HIV exp (- 1k~r)[3 ()1 av(x), (6.168)
[5 ()] ——-f—fffv exp(-ik+x)[u_(x)] 4V (D). ('6.169)v

Using (6.166)-(6.169) in (6.163)-(6.164) we obtain



(6)

(7)

(8)
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Aon T (2“)_3”fg—space[§.m<‘£>J'E.NLo(E)]'fin(h?1 av(k), (6.170)
Bm’n = (ZﬂD—BIIIE_SPaCEEETm(_E)].I:EE’-n(l—{')] dV(E). | (6.]7])

Whether or not (6.170) and (6.171) are easier to evaluate than (6.163)

and. (6.164) depends on. the situation at hand.

The second step in the numerical procedure consists of truncating the
system of equations (6.162) to a square one of finite order N and

solving X ..,XN from the remaining equations by some standard

1o |
subroutine. It is clear that the present step introduces an error, the
magnitude of which is decisive for the final accurary of the solution

of the scattering problemgl

The computed values of X]""’XN are substituted in (6.159) and (6.160)

which are then approximated by

[F ()] = z§=] X [£ (r)] whenr eV, (6.172).
and
[3°,@3 = [N X [3 ()] whenrel. (6.173)

The computed results (6.172) and (6.173) are used to compute the
scattered field anywhere iniR;\S (cf.Section 6.9).

Error estimation

Once the computations have been performed, the crucial question as to the

accuracy of the answers is raised. No detailed error estimation of the

integral-equation method exists and one has to content oneself with a few

checks that can be carried out. In this respect one can:

(a)

increase the number of equations that is taken into account in (6.162)

and see how much the values of the coefficients Xn change,
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(b) verify to which accuracy the reciprocity relations (6.118) and (6.119)

are satisfied,

(c)verify to which accuracy the extinction cross—section theorem (6.130) is

satisfied.

Note that (a) works for any incident field, while (b) and (c) are restrict-
ed to plane waves as incident fields. In practice, (a) is an effective

check; (b) and (c) are less sensitive to the inaccuracy in {X,}.

Choice of the expansion and weighting functions

A general guideline as to the 'choice of the expansion functions is that
they should reproduce as closeiy as possible the peculiarities of the field
quantity that they are to represent. Known values at the boundary of the
domain where the relevant integral equation holds, singular behaviour in
the neighbourhood of edges, etc. should reflect themselves in each specimen
of the sequence of expansion functions. From a mathematical point of view,
a sequence of orthogonal functions is preferred, normalization is usually
not worth the effort. As to the weighting functions, there are fewer re-
strictions. Mathematically it has some advantages to let the sequence of
weighting functions coincide with the sequence of expansion functions. I,
moreover, the two identical sequences are orthogonal, the coefficients
Bm,n (cf£.(6.164)) vanish when m # n.

Since at this point it is impossible to give a review that would
reasonably cover the literature on the subject, we confine ourselves to the

few indications presented in Table 6.3.

Table 6.3. Expansion and weighting functions in the application of the
method of moments to scattering problems

expansion or weighting function configuration
unit pulse function 6(£f£n) general
where {Eﬂ} is a selected set of Refs.[6.1]1, [6.11]

points in or on the scattering

object
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expansion or weighting function

configuration

 rectang1e function: rectn(£)=l
if r e AVn, rectn(£)=0 if r ¢ AVn,
where {AVn} is a suitable subdivision

of the scattering object

linear interpolation polynomial
between a selected set of points
in or on the scattering object

(c£.Eq.(6.7) and Exercise 6.7)

eigenfunctions of Laplace's
equation in elliptic-cylinder :

coordinates
eigenfunctions of Laplace's equation
in spheroidal coordinates

trigonometric functions

periodic cubic splines

genefal
Refs.[6.1], [6.11]

general

Ref.[6.11]

perfectly conducting plane
strip

Ref.[6.12]

perfectly conducting
circular disk

Ref.[6.13]

imperfectly conducting plane strip

Ref.[6.14]

periodic boundary

Ref.[6.15]

Computing time

The time consuming elements bithecomputatibn are the evaluation of the

coefficients Am
5

(either a double integral over the scattering object or

an integral over the entire k-space) and the computation of XI""’ XN from .

the system of linear, algebraic equations, especially if N has to be

chosen large in order to attain to the desired accuracy. In this respect i

we recommend to put sufficieﬁt effort in choosing the expansion and

weighting functions, since more sophistication at this stage may lead to

a smaller value of N later on.

EXERCISES

Exercise 6.33. Show that for the plane wave of Eq.(6.29) as incident field




the quantity Y given by Eq.(6.165) can be written as Y [gm(—kog)]-ffl ik
where [w ] is given by Eq.(6.169) and [f_u] = gl -

|2

i

[ =
|

Exercise 6.34. Use Egqs.(6.101) and (6.160) to show that the expression for

the spherical-wave amplitudes in the far-field region can be written as

[Eé(g)] =) X[ (Q)J'EF (k.8)], where [j_ 1 is given by Eq.(6.168).
n ‘oo =n " 0= =1

6.14 Concluding remarks

The integral-equation formulation of scattering and diffraction problems
yields, in principle, accurate results for a wide variety of scattering
objects as far as their shape, dimensions and physical properties are con-
cerned. In the preceding sections we have developed the theory for objects
with arbitrary geometry. If this geometry belongs to a special class,
however, it will on the whole be advantageous to adapt the procedure of
formulating the problem to the relevant geomefry right from the beginning.

Special geometries in this sense are:

(a) cylindrical objects,
(b) objects with rotational symmetry,
(¢) screens in 4 planar configuration,

(d) object whose boundaries show spatial periodicity, e.g. optical

gratings.

A detailed analysis of the relevant techniques is beyond the scope of the

present chapter.

Uniqueness of the solution

Another problem of interest is the question whether the solution of the
integral equations in Sections 6.9, 6.10, 6.11 aﬁd 6.12 is unique. With a
few exceptions, this is indeed the case. For a perfectly conducting object
(Section 6.10), the uniqueness is disturbed at a set of isolated fre-
quencies. The latter are related to the matural frequencies of the free

electromagnetic oscillations that would occur in the domain V1 if this
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were filled with the surrounding medium and if appropriate boundary

conditions of the homogeneous type would be invoked on S. For details in

this respect we refer to the literature ([6.16], [6.177, [6.181, [6.191).

Presentation of the results

A final remark will be made about the presentation of the results. The

quantities of interest are: '

(a)
(b)

(c)
(d)
(e)
and
(£)
(g)
(h)

All

the field distribution inside the scattering object and on its surface,

the angular distribution of the spherical-wave amplitudes of the

scattered field in the far-field region|

the angular distribution of the radiation intensity,

the time-averaged scaﬁtered power,

the time—averagéd absorbed power,

in case of plane-wave excitation

the scattering cross—section,

the average scattering cross-section over all directions of observation,

the absorption cross—section.

results should preferably be presented in an appropriately normalized

form.
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APPENDIX

6.A The spatial Fourier transform and some of its propertieé

In this appendix we briefly discuss the spatial Fourier transform and its
properties as far as they are needed in the analysis of scattering prob-
lems. We shall present the formulas applying to scalar functions of posi-
tion; the results are easily extended to vector functions of position.

Let £ be some complex— or real-valued function of position r, defined
on a bounded subdomain Vl ofﬁRg. The boundary of V] is the closed surface
S (Fig. 6.7). S is assumed to be sufficiently regular, i.e. the unit vector

n along its outward normal is a piecewise continuous vector function of

n

Fig. 6.7. The bounded domain Vl’ interior to the closed surface S, to

which the spatical Fourier transform is applied.

position. The unbounded domain exterior to S is called VO. The spatial

Fourier transform f of f over the domain Vl is now defined as

Fo) 2L [f], exp(-ik-r)£(x)dV(r) with k e B (6.41)
1

b
k=%ki +ki +ki (6.A2)
— XX y=y Z—2Z

denotes the wave vector. Application of the Fourier inversion theorem

yields

@0 7 [ aceem (D E@AVR) = {1, 4, 0} £(2)

when ¥ « {V], S, VO}, (6-A3)
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where "k-space" indicates that the integration with respect to k is to be

carried out over the entire R. In case r ¢ S, the integral in the left-
-hand side of (6.A3) has to be interpreted as a Cauchy principal value
around infinity, while the factor i at the right-hand side of (6.A3)
applies only to those points on S around which S is locally flat.

Next; we consider the spatial Fourier transform of Vf. Using the defi-
nition integral (6.Al) we obtain

3

[[]y exp(-ik-n)¥E(x)dv(x) = [ff, Vlexp(~ik-r)f(r)1dV(z)
1 1
- [, f@Y exp (~iker)dv(r) = []gn(x) exp(-ik-x)f (r)dA(r)
A
+ ik [[fy exp(-ik-r)£(z)av(r) (6.44)
I

where we have applied Gauss' theorem to obtain the integral over S. Hence,

we have
VE = ikf + [[gexp(~ik-)n(n)(x) dA(D). (6.45)

The second term at the right—hand side of (6.A5) is nothing but the
spatial Fourier transform of the function nf over its domain of definition

S.

In the theory we shall further encounter the product Eg of two spatial

~

Fourier transforms. One of the two factors, say f, in this product can be
. ‘s . ' . . ) . 3
identified with a function that is defined on a bounded subdomain V1 of R
while the other factor, §, is associated with a function that is defined

~

in the entireiRB. The formulas (6.Al1) and (6.A3) then apply to £, while

def

810 TfJf (et (Hik DE DAV (D (6.46)

and k
(2w>"3fff exp(iker)g(k)dV(k) = g(r) for all r e R, (6.A7)
k-space — =5 = — — -
Using successively (6.A1) and (6.A7) we obtain

0 [ gpace P (HrDE WE WAV (W)
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@) - g pacet @ R DRV [[] Vlexp<—'ih-£'>f<z'>dV<z">

[1f, £@ave @m 7 ff_ expliks (zr") ()4 (K)
] —_— .

space

fffu f(r")g(x-r')dv(r') with E_eiRS. (6.48)
1 :

]

Hence, the Fourier inversion of fg is the spatial comvolution of f and g.

Note, that in (6.A8) we have EUEZRQ.

6.B The spherical-wave amplitudes of the vector potentials and their

derivatives in the far-field region

All vector potentials occurring in (6.74) and (6.75) are of the same
general form. Theirbapproximate form in the far-field region, i.e. as
|r| » =, determines the approximate form of the scattered field in the
far-field region. As a typical example we consider the vector potential

associated with a volume-source distribution and write it as (cf.(6.70))

I, = [, 6@ EHaveE!)  withr B (6.31)
. 1 -
The function G(r-r') is given by (cf.(6.72))

G(r-r') = (4w|£f£f|)_lexp(ik|£j£'|), ‘ (6.B2)

where we have written

N

k 28E0 (6 = iuwe) iwnl?, (6.83)
with Re(k) > 0 and TIm(k) = Oi First we construct the approximating expres-—
sion for G(r-r') as |r| » =. To this end we observe that from

i
lr-r'| = (zrx - 2cox' +x'er")?

= lelm2een/zl? o et )P Pt | (6.B4)

it follows that




|£fr'] = || - ngf.+ vanishing terms as |£J > o, (6.B5)
where
o= /lzl. | (6.86)

Fig.6.8 illustrates (6.B5).With the aid of (6.B5) we approximate G(£f£') by

__

0 8!

—

Fig 6.8.Position vectors r and r' for a volume—source distribution; in
g L r J

the far—field region we have |x-x'| = |x| - 8-x' + vanishing terms as
|_1;[ -»> o, '
G(E:E')~(4ﬁ1£J)—lexp(ik|£J)exp(—ikgIE') as x| » =. (6.B7)

Substitution of (6.B7) in (6.Bl) yields

1) ~ 58y (4nlx)) T expCik|z])  as [x] + =, (6.88)
where '
F,(0) = [[f, exp(-ikbrr')J (x')dV(z') with 8 e Q. (6.B9)
i) 1 61') 3, (x")dvV(r ]

Note that (6.B9) is in accordance with (6.Al1). Equation (6.B8) shows that
the spherical—wave amplitude.of'gv(g) in the far-field region is the
spatial Fourier transform E&(E) of QV(E), extended over the domain V] and

taken at'the value k = k8. Similar results hold for the vector potentials



associated with surface-source distributions.

In the integral relations (6.74) and (6.75) pertaining to the electric-
and the magnetic-field strengths also spatial derivatives of the vector
bpotentials occur. To obtain their approximate representation in the far-

~field region we observe that

ve(z-r') = (ik - |r-r' | he@r")ylrr'], (6.310)
where

Vlr-r'| = (zx")/|z-zr']. ‘ | (6.B11)
However

(zx')/|x-z'| = 8 + vanishing terms as [r] >« (6.B12)

and hence
VG(r-r'y ~ ikeG(r-r') as |r| - =, (6.B13)

in which the expression (6.B7) for G(EfE') is to be substituted. Using

(6.B13) we arrive at

VLI ()] ~ ikelike N, (x)] as |z] » = (6.B14)

" and
Vox I(r) ~ ikg x M, (x; as |z] + =, . ~ (6.B15)

in which the expression (6.B8) for EV(E) is to be substituted. Again,
similar results hold for the vector potentials associated with surface-

-source distributions.



