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Absorbing Boundary Conditions and Perfectly
Matched Layers—An Analytic Time-Domain

Performance Analysis
Adrianus T. de Hoop, Peter M. van den Berg, and Robert F. Remis

Abstract—The time-domain performance of a number of ab-
sorbing boundary conditions invoked on the boundary of a domain
of computation, as well as of a perfectly matched layer surrounding
such a domain, is carried out for a test configuration for which ana-
lytic expressions for the relevant field quantities exist. The test con-
figuration consists of a small loop antenna radiating into a homo-
geneous, isotropic half-space. On the planar boundary of this half-
space, either an absorbing boundary condition is invoked or a per-
fectly matched layer is started that is truncated at some finite depth
of penetration. For a loop parallel to the boundary, closed-form
analytic expressions for all field components of the spuriously re-
flected field are presented for all truncation conditions involved.
A number of important features show up that might be masked in
purely numerical implementations of the procedures under consid-
eration.

Index Terms—Absorbing boundary conditions, computational
modeling, perfectly matched layers.

I. INTRODUCTION

T RANSIENT-WAVE propagation and scattering problems
are often analyzed in configurations of unbounded extent.

The part of the configuration in which computational time-do-
main methods can be used to obtain the relevant field values
is, however, necessarily of bounded support. This region, the
target region, is taken to contain those parts of the configura-
tion in which one is interested in the detailed behavior of the
field quantities involved. The target region’sembeddingin
is, standardly, taken to have such simple physical properties that
analytical representations can be constructed for the wave quan-
tities in it. In principle, these representations can serve to con-
struct boundary relations on the outer boundary of the target
region that mimic the (passive) radiation into the embedding
without affecting, as far as possible, the computed field values in
the target region itself. Through the construction of the embed-
ding’s Green’s function, the relevant boundary integral equa-
tions and Oseen’s extinction theorem provide exact absorbing
boundary conditions [1, Sec. 7.12, 15.12, and 28.12]. Both of
these relations do yield interrelations between the field quanti-
ties, but they do so in a nonlocal and a noninstantaneous manner
and, hence, ruin the computationally favored spatially band and
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Fig. 1. Test configuration: radiating loop antenna with absorbing boundary
conditions applied atfz = 0g and perfectly matched layer infz < 0g,
truncated atfz = �dg.

explicit time structure of the algorithm (for example, the fi-
nite-difference time-domain one) for solving the relevant wave
equations.

One way to preserve the computationally favored structure
of the algorithm is to constructabsorbing boundary conditions
(ABCs) that sufficiently accurately approximate the exact
boundary relations by spatially local and timely instantaneous
ones. Several of these are known in the literature [2], [3]. More
recently, truncatedperfectly matched layers(PMLs), having
absorption and/or time delay as their acting agents, have been
introduced to serve the purpose [4]–[6]. The performance
of both ABCs and PMLs is usually tested through purely
numerical experiments. In such experiments, the employed
signatures (pulse shapes) of the sources may hide some of the
features that are inherent to the approximation at hand. The
present contribution investigates the performance of a class
of ABCs and a class of PMLs in a test configuration where
analytic time-domain expressions for the field quantities are
known and their features show up in all detail.

II. TEST CONFIGURATION

As a test configuration, we take an electric current carrying
wire in the shape of a small planar loop that emits transient elec-
tromagnetic radiation into a homogeneous, isotropic medium
with permittivity and permeability . The barycenter of the
loop is located at , where

are the coordinates with respect to an orthogonal,
right-handed, Cartesian reference frame. The vectorial area of
the loop is (Fig. 1). Let be the electric cur-
rent in the loop, with the time coordinate. Then, the electric
field strength and the magnetic field strengthof the emitted
electromagnetic field are given by [1, Sec. 26.10]

(1)
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where is the magnetic
dipole vector potential, is the magnetic moment of the
loop antenna, and is the
distance from the barycenter of the loop to the point of obser-
vation.

III. W AVE-SLOWNESSFIELD REPRESENTATION

The construction of absorbing boundary conditions, and the
terminology involved, standardly originate from the representa-
tion of the field expressed as a superposition of its wave slow-
ness constituents parallel to the planar boundary on which the
conditions are to be invoked. We shall illustrate the procedure
for . First, a one-sided, causal, time Laplace transformation is
carried out. On the assumption that the exciting electric current
is switched on at , the Laplace transformof is given by

with (2)

We take the Laplace transform parameterto be real and posi-
tive. (This implies that for the reconstruction of from
we have to rely on Lerch’s uniqueness theorem [7, p. 63], since
the standard Bromwich inversion integral would require com-
plex values of .) Correspondingly

(3)

Subsequently, the wave slowness representation parallel to the
plane is written as

(4)

which entails the property , . Since
satisfies the wave equation

(5)

the slowness-domain equivalentof satisfies

(6)

in which is the wave slowness
normal to the plane . The solution is given by

(7)

At the plane , we therefore have

at for all (8)

This relation can be interpreted as characterizing the property
that the half-space totally, and exactly, absorbs the
radiated field. As the expression forshows, the spatial coun-
terpart of is a pseudo-differential operator that, due to its non-
locality, destroys the sparseness of the finite-difference or fi-
nite-element discretization operators occurring in the computa-
tional field modeling.

TABLE I
ABSORBINGBOUNDARY CONDITIONS

To remedy this disadvantage, ABCs invoked as or
an extrapolation of the wave motion into a PML with support

(i.e., one that is truncated at , where
is the thickness of the layer), are employed. For a class

of ABCs and a class of PMLs exact space–time expressions for
the spuriously reflected vector potential in the half-space

will be determined in subsequent sections. From these,
the corresponding electric and magnetic field strengths follow.

IV. A BSORBINGBOUNDARY CONDITIONS (ABCS)

All ABCs replace (8) with the corresponding condition with
replaced by some rational approximationin and to

about . As the class of ABCs that we consider
we take

(9)

in which the coefficients and are suitably chosen. For
and the approximation is of the Taylor type,

for and the approximation is of the Padé type
(Table I). The corresponding boundary condition in space–time
is

as (10)

V. SPURIOUSLY REFLECTEDWAVE ABCS

Upon applying any of the ABCs of the type (9), the expression
for the vector potential in the wave slowness domain becomes

, where is given by the right-hand side of (7)
and by

for (11)

in which the wave slowness domain reflection coefficient
follows as

(12)

Application of the first author’s modification of the Cagniard
method [8], [9] yields the following time-domain expression for

:

(13)

in which denotes time convolution and

(14)
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is the ABC Green’s function. In the latter

(15)
is the ABC time-domain reflection function, in whose expres-
sion and originate from
and , respectively, upon replacing by
and substituting

(16)

(17)

Here, is the offset of the point of observation
from the normal to the boundary through the source,

is the distance from the image of the source in the
plane to the point of observation and is
the arrival time of the spuriously reflected wave. At , the
time-domain reflection function takes the value

(18)

VI. PERFECTLY MATCHED LAYERS

Next, the half-space serves as a perfectly
matched layer that we truncate at the plane , with

. In this layer, the field equations that replace the
exact ones are obtained by the transformations ,

, together with , and

, where is the
time-domain equivalent of the causal, complex frequency-do-
main, coordinate,stretching functionof the layer [5], [6].
To comply with the condition that the differential equation in
the stretched-coordinate domain admits causal solutions, it is
assumed that is real and positive for real, positive
values of and all . Under the stretching procedure, (6) is
replaced by

(19)

The solution of this equation is

(20)

in which

(21)

is the domain PML stretched coordinate normal to the
boundary. The corresponding time-domain expression for
the unbounded medium follows from the inverse Laplace
transformation of

(22)

in which

(23)

The truncation-generated reflected wave generated by invoking
the boundary condition as (vanishing
tangential electric field) follows as

for (24)

in which

(25)

with

(26)

as the domain PML stretched coordinate normal to the layer
from the image of the source in the truncation plane

to the point of observation in the half-space .
In this half-space, we have , where is the
Dirac delta distribution. Consequently, in the wavefield
would remain undisturbed if the layer would not be truncated,
as (20) indicates.

The class of PMLs whose performance we are going to ana-
lyze has profiles of the type

(27)

where the PMLexcess time delay profileis given by

for (28)

and the PMLexcess absorptive profileby

for (29)

in which , , , , , and are real-valued, nonnega-
tive parameters. The corresponding total-field time-domain dif-
ferential equation is

for (30)

in which

(31)

VII. SPURIOUSLY REFLECTEDWAVE PMLS

For the profiles (27)–(29), the spuriously reflected wave is

(32)
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Fig. 2. ABC on-axis reflection: (left) early time and (right) late time.

Fig. 3. ABC near-boundary reflection: (left) early time and (right) late time.

Fig. 4. PML excess time-delay and absorptive profiles.

in which

(33)
with the Bessel function of the first kind and order zero and

(34)
, with , the travel time from the

image source to the point of observation, the
damping coefficient and the angular frequency of
oscillation.

VIII. N UMERICAL RESULTS

Figs. 2–6 show some ABC and PML numerical results in the
form of time-domain wave waveforms of the relevant Green’s
functions and at 1) a location on the axis through the
source ( ) and 2) at a location near the
boundary ( ), emphasizing (left) early-time
and (right) late-time behavior. The code indicating the type of
ABC is given in Table I. The solid line marks the incident (i.e.,
desired) wave. The PML excess time-delay and excess absorp-
tion profiles are shown in Fig. 4. In all cases, the ideal situa-
tion would be the absence of a reflected wave. With an ABC,

Fig. 5. PML on-axis reflection: (left) early time and (right) late time.

Fig. 6. PML near-boundary reflection: (left) early time and (right) late time.

early-time behavior on axis is superior to early-time behavior
near the boundary. Late-time behavior of the reflected-wave
Green’s function is invariably dictated by the inverse distance
amplitude decay only. A PML offers the advantage of steering
the result through excess time delay and/or excess absorption
in the layer. In a practical numerical simulation, the admissible
profiles and their magnitudes are only restricted by the layer’s
thickness that one allows for in conjunction with the type of dis-
cretization stencil one employs. The input-source signature af-
fects, as (13) and (32) show, via a convolution with the Green’s
function and a time differentiation the final result. Convolution
is, however, a smoothing process whose final result may mask
an inherently inaccurate Green’s function. Because of the avail-
ability of analytic expressions, the present analysis does provide
estimates of the performance of an ABC or a PML prior to its
implementation in a finite-difference of finite-element code.
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