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Abstract.

We develop an asymptotic ray theory for transient diffusive electromagnetic

fields in isotropic media. The formulation is first derived in the time Laplace transform
domain by introducing an ansatz procedure, whereby appropriate expansions for the
electric and the magnetic field strengths are substituted in the original field equations.
We arrive at consistent recurrence formulas for the sequences of field amplitude
vectors that multiply appropriately chosen asymptotic sequences of algebraic powers of
the Laplace transform parameter. These representations differ for the two types of
fields (electric and magnetic fields) and for the two types of sources (electric current
source and magnetic current source). The exponential part of the field expressions
contains the diffusive equivalent of the eikonal function in the asymptotic ray theory of
wave propagation. This function satisfies the diffusive equivalent of the eikonal
equation. Next, we derive the transport equations for the vectorial electric and
magnetic field amplitudes of the successive orders. Transient field representations
within the asymptotic ray approximation are then obtained by carrying out the inverse
Laplace transformation to the time domain by inspection. The ray approximation thus
obtained is asymptotic for ‘‘early times”’. We consider as an example the case of the
electric and the magnetic dipole radiation in a homogeneous medium. Here an exact
solution exists, which we show to exhibit the structure of the original ansatz but with a
finite number of terms. The asymptotic ray theory for transient diffusive
electromagnetic fields is expected to lend itself to important applications in surface,
surface-to-borehole, and crosswell transient electromagnetic prospecting.

1. Introduction

The asymptotic ray theory of acoustic and elas-
todynamic wave fields in inhomogeneous and aniso-
tropic structures has found important applications
in geophysical prospecting (for example, in cross-
well seismic tomography). This motivates research
into the potentialities of ray-asymptotic methods in
surface, surface-to-borehole, and crosswell tran-
sient electromagnetic prospecting. In the present
paper such a theory is developed for the diffusive
electromagnetic field equations where the contribu-
tion from the electric displacement current is ne-

glected. Starting from these equations in the time
* Laplace transform domain, an ansatz procedure is
introduced, whereby appropriate expansions for the
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electric and the magnetic field strengths are substi-
tuted in the field equations. The algebraic powers of
the Laplace transform parameter in the expansions
are chosen in such a way that a consistent recurrence
scheme results. The exponential part of the field
expressions contains the diffusive equivalent of the
eikonal function in the asymptotic ray theory of wave
propagation. This function satisfies the diffusive
equivalent of the eikonal equation. Next, we derive
the transport equations for the vectorial electric and
magnetic field amplitudes of the successive orders.
Subsequently, we transform the results to the time
domain and thus obtain the transient field representa-
tion within the asymptotic ray approximation. The
successive terms in the ray approximation thus ob-
tained form an asymptotic sequence for ‘‘early
times’’. As an example, the case of a homogeneous
medium is considered as a canonical problem. The
exact solution to the point source problem is shown
here to have the structure of the ansatz we started
with, but it contains a finite number of terms.
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For the scalar diffusion equation an asymptotic
ray theory has been developed by Cohen and Lewis
[1967]. The electromagnetic problem is somewhat
more complicated. First, the asymptotic ray repre-
sentation for the electric field differs from the one
for the magnetic field, since the symmetry in the
electric and the magnetic field that exists in electro-
magnetic wave theory [Born and Wolf, 1980; Kline
and Kay, 1965; Babic and Buldyrev, 1991] is lost.
Furthermore, the representations differ for the two
types of sources (electric current sources and mag-
netic current sources). Finally, different diffusion
kernels occur in the different field constituents. As
far as the problem of coupling the asymptotic ray
representations to a source (for which the point
source is a canonical case) is concerned, the diffi-
culty that the successive orders show a spatial
singularity of increasing order in the neighborhood
of the source [see Bleistein, 1984] remains. In this
respect it is to be noted that in the case of a
homogeneous medium the representation termi-
nates exactly with the term that shows the highest
singularity that is compatible with the presence of a
point source.

In the analysis, r is the position vector in an
orthogonal, Cartesian reference frame, ¢ is the time,
V is the spatial vectorial differentiation operator,
and 9, denotes differentiation with respect to time.
The field quantities are the electric field strength E
= E(r, ) and the magnetic field strength H = H(r, ).
The source quantities are the volume source density
of electric current J = J(r, £) and the volume source
density of magnetic current K = K(r, ). The field
quantities are taken to be causally related to their
excitation by the sources. The medium properties
are assumed to be nondispersive and are character-
ized by the conductivity o = o(r) and the perme-
ability i = u(r), which are taken to be piecewise
continuous functions of position.

All source and field quantities are assumed to be
bounded functions of time. They vanish prior to the
instant, taken as ¢ = 0, at which the sources are
- switched on. Their time Laplace transforms are
thus given by

sER, s>0,

M

F@, s) = fw exp (—s) F(r, 1) dt
=0

where F stands for any of the source or field
quantities. Note that we have taken s as real and

positive, which is sufficient to guarantee a unique
interrelationship between a causal time domain
quantity and its Laplace transform. In view of
Lerch’s theorem [Widder, 1946] the uniqueness is
even guaranteed for the set of equidistant points on
the positive, real s axis {s,, = s¢ + nh; sg E R, 59 >
0,hER,A>0,n=0,1,2,---}

The transient electromagnetic diffusion problem
is governed by the electromagnetic field equations
in which the electric displacement current is ne-
glected, namely,

VXH-oE=] @
VXE+ ud,H=-K (3)

with their time Laplace-transform counterparts
VxH-ok=] )
VXE+suH=—-K. )

The corresponding compatibility relations are

V.(cE)y=-V-J (6)
Ve(psH) =-V-K Q)

with their time Laplace transform counterparts
V-(oB)=-V-§ ®)
sV - (uH) =~-V-K. ©)
Equations (4) and (5) serve as the starting point
for the substitution of a ray asymptotic expansion.
From them the diffusive eikonal equation as well as
the recurrence relations between the successive
vectorial electric and magnetic field amplitudes fol-
low, together with a number of compatibility rela-
tions between these amplitudes. The transport
equations for these amplitudes, on the other hand,

follow more easily from the second-order equations
embodied by (4) and (5) and (8) and (9), namely

V()Y + (0E)] — uV X [Vu(V x B)] ~ souk

=sud = V[Ua(V- 3]+ nV x [(1/w)K] (10)
VI(U/p)V + (uiD)] — oV x [1/o(V x H)] — souH
= oK — V[(1/sp)(V - R)] = oV x [(1/0)]]. (1




DE HOOP ET AL.: RAY THEORY FOR DIFFUSIVE FIELDS 43

In particular, the cases of a point source of electric
current and a point source of magnetic current will
be investigated. For these we have

J = Jo(H)ad(x — r') 12)
K = Ky()bd(r — 1), (13)

where r’ is the position of the point source, Jy(¢) and
K,(t) are the source signatures, and a and b are unit
vectors that specify the orientation of the source.
Correspondingly,

J=Jy(s)as@ —r") (14)

K = Ko(s)bd(r — 1'). (15)

2. Ray Asymptotic Expansions for
the Fields Generated by an

Electric Current or a Magnetic
Current Point Source

For the electromagnetic field generated by a point
source of electric current the ray asymptotic expan-
sions are taken as

E'(r, v/, ) ~ Jo(s)

| [z s~m=D2e ] (x, r')} exp [—s"¥(r, r')] (16)

m=(
A(r, v', 5) ~ Jo(s)

exp [—s2¥(r, 1')], (17)

m=0

. |:z S_(m—l)/zh,',n(l‘, ')

and the expansions for the field generated by a point
source of magnetic current are taken as

BEGr, v, 5) ~ Kols)

. 2 s~ D2eK(y r’)} exp [—s"2¥(r, r')] (18)
m=0

A

AX(r, v/, 5) ~ Ko(s)

. Z S_M/zh,lfl(l’, r’)} exp [_51/2\1,(1'> l")]. (19)

m=0

Here ¥ = ¥(r, r') is the diffusion eikonal, and all
dependences on s, r, and r’ have been indicated
explicitly. Substitution of the expansions in (4) and

(5) and equating to zero the terms of equal powers
of s leads, for both expansions, to the following
recursion relations that hold away from the source
and in which the superscripts J and K, as well as the
arguments r and r’, are omitted:

VXh,_ ,—V¥Xh, — ge, =0 (20)
m=1,2,3,+"",

VXeni—V¥Xe,+phy, =0 1)
m=1,2,3,+",

while the terms corresponding to m = 0 lead to
—V¥ X hy — oeg = 0, (22)
—V¥ X ey + why = 0. (23)

To investigate the condition under which a nontriv-
ial solution of (22) and (23) exists, we first scalarly
multiply (22) by V¥, which leads to

e V¥ =0 (24)
and scalarly multiply (23) by V¥, which leads to
hy * V¥ =0. (25)

Elimination of hy from (22) and (23) and use of (24)
leads to

(V¥ - V¥ — gp)ey = 0. (26)

Similarly, elimination of ey from (22) and (23) and
use of (25) leads to

(VT - V¥ — gp)hg = 0. Q7)
Both equations lead to the condition
V¥ V¥ =opu. (28)

Equation (28) is the diffusive ray counterpart of the
eikonal equation in the asymptotic ray theory of
wave propagation.

Another property of the zero-order amplitudes
follows upon postmultiplying (22) vectorially by hg.
Again, using (25), this leads to

€y X ho = U—l(ho * ho)V\P. (29)

Similarly, premultiplying (23) vectorially by e, and
using (24), we obtain

ey X hy = ,u,_l(eo . eo)V\If. 30)
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From (29) and (30) it follows that
oeg ey = puhg - hy GD

and hence we can write
e X hy = (O‘M)_](% oeg ey + %,U«ho ~ho)V¥.  (32)

Another useful relation is obtained by taking the
gradient of (28). Applying the vector identity that
rewrites the gradient of the scalar product of two
vector functions, it follows that

V(VE - V) = 2[(VE) - VIV, (33)
Using this, we arrive at
[(VE) - VIV¥ =1V(op). (34)

This result is of importance to the construction of
the ray trajectories.

Once ¢ and hy have been determined, the recur-
rence scheme given by (20) and (21) can start. This
system of equations is subject to a number of
compatibility relations. First, operating on it, as
well as on (22) and (23), with the divergence oper-
ator V, we obtain

—V@ - (VX h,) + V- (0€y) =0 (35)
m=0,1,2,+"+,
V- (VXe,) + V- (chy,) =0 (36)

m=0,1,2,+--.

Second, operating on (20) and (21) with V¥, we
obtain

—V (VX h,_y) + VT (ce,,) =0 G7)
m=1,2,3,++",
V- (VX e,_;)+ V- (uh,)=0 (39%)

m=1,2,3,++-.
From (35) and (36) and (37) and (38) it follows that

V¥« (oe,) =V (ocen—1) m=1,2,3,-, 39)

V- (gh,)=V-(uh,_;) m=1,2,3,---. (40

These relations also follow upon substituting the
ray asymptotic expansions into the electromagnetic
compatibility relations (8) and (9) away from the
sources.

Finally, we have to account for the property that
in the determinant of the coefficients of (20) and

(21), when considered as a system of equations to
be solved for e,, and h,,, V¥ satisfies the eikonal
equation (28). In view of this, elimination of e,
from (20) and (21) leads to

—V¥ %X (VX h,_)

+ (Up)[VE X (V X e,_)] X VE} =0 (1)
m=1,2,3+--,

and elimination of h,, to
V& X (VX ep_y) + (VoW[VE X (VX hye )] X V)= 0

m=1,2,3,-++. (42

It is observed that (42) follows from (41) and vice
versa.

3. Ray Trajectories

The ray trajectories are constructed from the
eikonal equation in the standard manner. They are
the curves in space that are the orthogonal trajec-
tories to the family of surfaces where ¥ = const.
Therefore, at any point on a surface ¥ = const the
unit vector along the normal coincides with the unit
vector along the tangent to the ray trajectory pass-
ing through that point. Denoting this unit vector by
7, from (28) one obtains

VO = (o), (43)

where the property + 7 = 1 has been used. From
this equation it follows that

TV = (ou)?. (44)

Now 7 - V is the spatial directional derivative along
the ray trajectory, which, upon introducing the arc
Iength A along the ray trajectory as a parameter, can
also be written as d/dA. With this notation, (44)

becomes
d¥/dr = (op) V2, (45)

Integrating (45) along a ray trajectory from any
point % corresponding to A = Ag to another point
corresponding to A = Ag, the relation

A
Ty — Wy = J *@w/dn) di
A=Ag

_ f " o) dA (46)
A=Ag
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is obtained, which, in view of the property (ou) 12

> 0, implies that ¥ increases in the direction in
which ¥ increases.

To construct a particular ray trajectory emanat-
ing from a point source, ¥ is set equal to zero at the
source and a particular starting direction is chosen.
The subsequent course of the ray trajectory is then
found by solving a second-order ray trajectory
differential equation. Let p = p(A) be the parametric
representation of the ray trajectory, then

7= (7+V)p=dp/dA. 47

Using (43) and (47) in (34), the relevant differential
equation is obtained as

(o) XN (o) P(dpldN)] = 3 V(op)  @48)
or equivalently as
d/dAL(op) P (dpldN)] = V(o) ™. “9)
Substitution of (43) in (24) and (25) yields
e 7=0 (50)
hg -7 =0. (51)

Hence e, and h, are transverse with respect to the
direction of the ray. Furthermore, substitution of
(43) into (29), (30), and (32) leads to

ep X hg = (/o) (hg - ho)=
= (a/p)"(eg * €0)7
= (o) TP oeg * €9 + 3 who * Bo)r, (52)

which shows that ey X hy is oriented along the ray.
The results of this section show that for the diffu-
sive case one can employ the standard ray-tracing
procedures known to apply to wave phenomena.

4. Amplitude Transport Equations

The amplitude transport equations govern the
behavior of the ray asymptotic diffusive field ampli-
tudes {e,, h,; m = 0, 1, 2,---} along a ray
trajectory. They have the form of a first-order
differential equation with V¥V = (ow)2(xV) =
(ow) V2 §/dA as differential operator. Although the
equations can be constructed from the system of
simultaneous equations (20) and (21) (see Kline and
Kay [1965] for the case of electromagnetic waves),

they follow much more easily upon substituting the
ray asymptotic expansions (16)—(19) in the second-
order vector differential equations (10) and (11) for
the electric and the magnetic field strengths. Carry-
ing out this procedure and applying several rules
from vector calculus, the following result is ob-
tained

| (1 )] (V(U'u) )
Z(V\I’ . V)ho +{oV-|—V¥ h() + . ho V& =0
a [eg72
) (53)

1 Viow)
2V¥ - Vyeg + | uV- | — V¥ |ep + ceg |V¥ =0
® op
) (54)

for the leading-order terms in the expansion and

1
oV- (-— V‘I’)}hm_l
o

2V¥ - V)hy,—y +

Viow) 1
+ hyy |[VE =V|—= V- (nh;—)
o n
1
—(TVX _Vth.—z m=2y334,".9 (55)
g

€m—-1

|
UVE - Veog + {,Lv- (— V\If)
o

(V(cm)
+

1
. em_1>V‘I' = V[— V- (aem_z)]
ap T

1
—’LVX<'—Vxem—2) m=2,3,45'.'a (56)
i3
for the higher-order terms.

5. Electric Current and Magnetic
Current Point Source Fields
in a Homogeneous Medium

So far the formal expansions (16) and (17) and
(18) and (19) apply to the source-free diffusive
electromagnetic field equations. To couple these
expansions to the sources, the cases of an electric
and a magnetic dipole in a homogeneous medium
are taken here as canonical ones. The field expres-
sions for these cases are exactly known, and they
will be shown to have the structure of our ansatz,
now, however, with a finite number of terms.

For the diffusive electromagnetic field associated
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with a point source of electric current with volume
density J = Jy(s)ad(r — r’) located at r = r’ and
placed in a homogeneous medium the time Laplace
transform expressions are given by

B = —sp,joaG + O'"IV[V . (joaé)] (57)
A’ =V x (Jya6), (58)
where
. exp [~s(ow) ?R(]
o= w) 7R with R=r-—r’ (59

47rlR[

is the time Laplace transform domain Green'’s func-
tion of the scalar diffusion equation. The right-hand
sides of (57) and (58) have the form of the expan-
sions (16) and (17) and can be written as

B = Jo(se] + 5'%] + e3) exp (—s'2¥) (60)
A’ = Jo(s"*n] + ni) exp (—s?W), (61)
where the diffusion eikonal is given by
¥ = (op) R (62)
and the amplitude factors by
1
ey = —pla—(a-RORM] R (63)
ol = -2 1/2[5. —3(a- ROHRW] (64)
! o 47[R|?
1
J=——[a—3(@a -RORD 65
1
hy = (op)(a x RY) —— 66
o= (op)"(a )477[R| (66)
= (ax RD 67
hy = (a ) pyr (67)
~ in which
RY =R/R| (68)

is the unit vector in the radial direction from the
source.

For the diffusive electromagnetic field associated
with a point source of magnetic current with volume
density K = Ko(s)a(r —r') located at r = r’ and in

a homogeneous medium the time Laplace transform
expressions are given by

AKX = —gRobG + (sp) V[V - (KebG)],  (69)
EX = -V x (K;bG), (70)
where, again,
o SRl Hom BRI e a1

47rR|

is the time Laplace transform domain Green’s func-
tion of the scalar diffusion equation. The right-hand
sides of (69) and (70) have the form of the expan-
sions (18) and (19) and can be written as

05 = Ro(hg + s7h{ + 57'h)) exp (—5'7®) (72)

BX = Ko(s el + eX) exp (—s2®) (73)

in which the diffusion eikonal is again given by

¥ = (ou) IR| (74)
and the amplitude factors by
1
K_ ol — (b  RORD] ——
hE=—olb— (b -ROR ]47T|R| (75)
172
hf =~ Z) b - 30 - RORO] (76)
I 4m[R|?
1
W =-—[b-3p -RO)RD 77
2 " b —3( )R] pRRE (77
K 12 (1) 1
eg = —(ou)“(b xR )4—77‘@ (78)
ef = —(b xRD) pr (79)
in which again
R = R/R| (80)

is the unit vector in the radial direction from the
source. The results of this section are used to match
the limiting behavior of the leading terms in the
asymptotic ray expansions to the source strength of
a point source of electric or magnetic current.
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6. Coupling of the Ray Asymptotic
Expansions to a Dipole Source

A procedure to couple the ray asymptotic expan-
sions to an electric or a magnetic dipole source is to
let, within a ball of arbitrarily small radius é around
the source point, the spatially singular terms in the
expansions coincide with the field expressions ap-
plying to a homogeneous medium with conductivity
and permeability equal to the values of the inhomo-
geneous medium at the location of the source. For
this purpose the right-hand sides of (63) and (66) are
used for the case of an electric dipole source and the
right-hand sides of (75) and (78) for the case of a
magnetic dipole source, with o replaced by o(r’)
and u by ("), while R™ is replaced by the initial
value of 7 along the chosen ray trajectory leaving
the source. Thus the limiting behavior of ey and hg
is determined, and the recurrence relations for the
successive terms in the ray asymptotic expansions
can start. For this procedure to work we first rely
on the property that the exact dipole source solu-
tion in the inhomogeneous medium can be decom-
posed into a singular part that has the described
behavior and a regular part that is certainly of order
o(1) as [r — r’| = 0. Second, we assume that in
accordance with the assumed existence of a ray
asymptotic expansion as given by our ansatz, the
property also holds that the regular part is of order
o(s®) as s — =, where « is the highest power of s
that occurs in the singular part of the expansion.
For the electric dipole source we accordingly have

B = (s¢) + 5'%] + &) exp (—s'?W) + B (81)
A7 = (s'2h] + ) exp (—s'?®) + A (82)

in which the remainders in the expansion satisfy the
relations

A

sBEL = o(1) r—r|—0 s—0o (83

sl = o(1) k—r|—0 s—>o0, (84)
while for the magnetic dipole source we have
X = (K + 57205 + s71h) exp (—s"20) + BE (85)

BE = (s12%X + &5 exp (—s'*¥) + BS (86)

in which the remainders in the expansion satisfy the
relations

A% =o(1) fF—r|—0 s> (87)

s = (1) r—r'|—0 s—x (88)

Both the justification of using our ansatz as a ray
asymptotic expansion and the analysis of the fur-
ther nature of the remainders in the expansions
would have to follow from a rigorous mathematical
analysis, for example, one based on an appropriate
integral equation formulation of the problem of
determining the field due to a point source in an
inhomogeneous medium and subjecting this formu-
lation to a rigorous asymptotic analysis, as is done
for ordinary differential equations in Erdélyi [1956].
The case of a point source in a one-dimensionally
continuously inhomogeneous medium might pro-
vide a canonical problem in this context. Here the
modified Cagniard method enables one to recast the
problem from its differential equation formulation
into a system of two coupled integral equations in
the direction of variation of the medium properties
[De Hoop, 1990; Verweij and De Hoop, 1990]. This
system of integral equations is amenable to a rigor-
ous asymptotic analysis in the sense that in each
subsequent step in the asymptotic approximation as
s — o, the remainder in the expansion can be
appropriately estimated [Verweij, 1992].

7. Transient Behavior of the
Ray Constituents

The transient behavior of the ray constituents is
obtained by convolving the source signatures Jy(?)
and K (¢) with the time domain counterparts of the
Green’s function parts that arise in the different
terms of the expansions. The latter are of the type
59 exp (—s >¥), with the values ¢ = 1, 1/2, 0, —1/2,
and —1. These are found as [Abramowitz and
Stegun, 1965]

3 ¥
s exp (—sl/z‘I’)$>Z (1/ 7)1 o
[(T¥e6r) — 1] exp (—PH4H) H(F), (89)

1 1
S1/2 exp (_SI/Z\P)$£ (1/77,) 172

32
C[(B220) — 1] exp (—VH4H) H(E), (90)
v
exp (—s"2¥)=>2(1/m)'? 3 XD (—¥Han HQ), ©1)
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572 exp (—s PO (/7)) 2 exp (— VYA H(), (92)
s exp (—s"2W)>|1(1/m)
t
. f (¥/7%?%) exp (—¥¥4r) df} H(2). (93)
7=0
The last result can be written alternatively as
s~ lexp (s 9)=>
H(). (94)

. [(llm)’/2 Jm exp (—y2/4r) dy
y=v

The corresponding results readily follow upon sub-
stitution.

Although real, positive values of s would suffice
for the correspondences (89)—(94) to hold (see sec-
tion 1), the time domain expressions are most easily
obtained by evaluating the corresponding Brom-
wich inversion integrals. For this evaluation to be
carried out the left-hand sides of (89)-(94) must be
continued analytically into the complex s plane, in
which process the correct (i.e., causal) branch of
512 is to be taken by introducing a branch cut along
the negative real s axis. The time domain expres-
sions for the electric field generated by an electric
dipole source located in a homogeneous medium
agree with those given by Ward and Hohmann
[1989].

8. Discussion of the Results

The formal expansions obtained by combining
the results of sections 2-7 are presumably asymp-
totic in the time Laplace transform domain with the
product of decreasing half-integer powers of the
Laplace transform parameter s and the function exp
(—s'?W) as the asymptotic sequence. Denoting the
members of this asymptotic sequence by {(}b,, x, 9},
~ they satisfy the order relation

&IH—I(X’ S) = O[S_Uz‘%n(x, S)]'

Hence the necessary condition ¢, (x, s) = o[¢,(x,
s)] for the sequence to be asymptotic [Erdélyi, 1956]
is met for s — . Transformation of (95) to the time
domain (which is an integration operation and
hence permissible on an asymptotic sequence)
yields

95

bnr1(x, r)=0[ f [7(t — )] Pd,(x, 7y drl.  (96)
=0

Consequently, the sequence {¢,(x, #)} satisfies the
necessary condition ¢,.1(x, 1) = o[¢,(x, 1)] to be
asymptotic at early times. The actual magnitudes of
the different terms are determined by the maximum
values that the right-hand sides of (89)—(94) attain at
some positive value of ¢. The latter value is influ-
enced by the value of the diffusion eikonal ¥ as it
has been built up along the relevant ray trajectory.

As the diffusion eikonal equation (28) shows, the
ray trajectories in the diffusive approximation are
real ray trajectories determined by the profile of the
conductivity (in addition to the profile of the per-
meability). In general, they therefore differ from the
(also real) ray trajectories in the lossless medium
wave propagation approximation, which trajecto-
ries are determined by the profile of the permittivity
(in addition to the profile of the permeability). The
leading terms in the expansions are polarized in the
plane perpendicular to the local unit tangent 7 to the
ray trajectory, eg, hy, and + forming a right-handed
vector triad. For these leading terms, (32) serves as
a kind of local ‘‘energy balance’’.

9. Conclusions

An asymptotic ray theory for diffusive electro-
magnetic fields due to a point source of electric or
magnetic current in an inhomogeneous, isotropic
medium has been developed. Starting in the time
Laplace transform domain, an ansatz procedure
with a diffusive eikonal function is postulated. The
latter leads to recurrence relations in the electric
and magnetic field amplitude vectors of the different
asymptotic orders. The vectorial nature of the prob-
lem induces a number of compatibility relations
with regard to the terms occurring in these recur-
rence relations. From the eikonal equation the
differential equation for the ray trajectories follows
in the standard manner. The vector diffusion equa-
tions for the electric and the magnetic field are used
to construct the amplitude transport equations
along a ray trajectory. The exact diffusive electro-
magnetic field from a point source of electric or
magnetic current in a homogeneous medium is
shown to have the structure of the ansatz. The
relevant field expressions are used to match the
leading-order amplitudes of the ray asymptotic ex-
pansions to the source strengths. The difficulty that
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the successive orders show singularities of increas-
ing order in the neighborhood of the source is
discussed. Finally, the order terms that are compat-
ible with the presence of a spatial delta function in
the volume source distributions are transformed
from the Laplace domain to the time domain, thus
giving the transient behavior of the relevant terms.
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