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Closed-form analytic expressions are derived for the efficient calculation of the transient acoustic
wave field emitted by a focused transducer with a spherical surface. The radiated transient acoustic
wave field is evaluated by applying the Maggi—Rubinowicz transformation to the Kirchhoff—
Huygens representation of the wave field. This transformation results in a line integral
representation along the rim of the radiating aperture that holds for a rim of arbitrary shape, and for
both planar and nonplanar radiators. The line integral is readily evaluated numerically and the
results are used to study the shape of the beam emitted by the transducer in its dependence on the
shape of the rim. This is shown through numerical results for a spherical-cap transducer and a
spherically curved rectangular-strip transducer. The computation time needed to evaluate the
(one-dimensional) integrals is in the order of seconds on a standard workstation. © 1995

Acoustical Society of America.

PACS numbers: 43.20.Px, 43.30.Vh, 43.38.Ar

INTRODUCTION

The standard method for analyzing the transient behav-
ior of acoustic transducers is to start from the Kirchhoff-
Huygens representation for the acoustic pressure of the emit-
ted wave field. In this representation, the values of the
acoustic pressure and of the normal component of the par-
ticle velocity at the radiating aperture of the transducer oc-
cur. For these quantities, an Ansatz is made and the relevant
surface integral is evaluated. This technique has been worked
out for planar and spherically curved transducers, starting
from the Rayleigh formulas, which are the appropriate start-
ing points for calculating the radiation into a half-space (see
Refs. 1-6 for an overview and references to the literature).
For the planar transducer, the integration over the radiating
aperture can in several cases explicitly be reduced to one
over the rim of the aperture. Now, in the Kirchhoff theory of
diffraction of light by an aperture in a black screen, it is
known that for a whole class of aperture distributions one
can show that the result of the surface integration over the
aperture is only a functional of its rim, and for a number of
cases the corresponding reduction from the surface integra-
tion to a line integration can indeed be carried out explicitly.
In these cases, the Maggi—Rubinowicz transformation yields
the tool to achieve this.””'* For our present purpose, this
transformation (with a minor modification) also turns out to
lead to the desired result. It is found that it not only applies
to the planar transducer but also to the focused one with a
spherical radiating aperture. Using the transformation, the
transient acoustic pressure radiated from a focused (spheri-
cal) transducer with an arbitrary rim is expressed as a line
integral over its rim. With the aid of the result, the transmit-
ting properties of focused transducers can be studied. Nu-
merical results are presented for the cases of a spherical-cap
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transducer and a spherically curved rectangular-strip trans-
ducer. They clearly show, directly in the time domain, the
focusing properties of the transducers.

The so-called impulse response method for calculating
the acoustic wave field radiated by a transducer is standardly
based on the Rayleigh integral representation with a normal
component of the particle velocity having a prescribed value
on the plane bounding the half-space where the radiation is
to be calculated. This representation reproduces the pre-
scribed values and thus yields an exact solution to a
boundary-value problem (for a half-space). The representa-
tion strictly loses its validity as soon as the surface on which
the normal component of the particle velocity is prescribed
deviates from a plane (such as is done for a focused trans-
ducer). Further, for a freely vibrating transducer (i.e., one
without an infinite perfectly rigid baffle), the representation
is incapable of evaluating the radiation in the half-space “be-
hind”’ the transducer. The Kirchhoff—Huygens representation
used in the present work, on the other hand, reproduces the
prescribed jumps in the acoustic pressure and the normal
component of the particle velocity across the radiating sur-
face and thus presents an exact solution to a salfus problem
(see Ref. 11). It applies to curved as well as planar transduc-
ers and gives the radiated wave field in all space, i.e., also
behind the transducer. In this realm, our analysis, where the
Kirchhoff—Huygens representation is rewritten in a compu-
tationally more advantageous form via the use of the Maggi—
Rubinowicz transformation, is exact. The two approaches
use different Ansdtze and do yield different results, but we
believe our approach to be the more consistent in case non-
planar and/or freely vibrating spherical radiators are in-
volved. (For the related discussion with regard to the wave
diffraction by disks and apertures in plane screens, see
Bouwkamp.'?)

Finally, it should be remarked that the receiving proper-
ties of a focused transducer follow from the latter’s transmit-
ting properties by the combined proper application of the
Rayleigh reciprocity theorem for acoustic wave fields and
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FIG. 1. (a) Geometry for radiating spherical surface 4. (b) Geometry for
spherical-cap transducer. Relevant quantities are shown.

the Lorentz reciprocity theorem for electromagnetic
fields."*!> As a consequence, the signal received from a point
source at an atbitrary location can also be expressed in terms
of a line integral over its rim,

I. DESCRIPTION OF THE CONFIGURATION AND THE
KIRCHHOFF-HUYGENS REPRESENTATION
FOR THE TRANSMITTED WAVE FIELD

The focused transducer consists of a radiating aperture
% that forms part of a spherical surface of radius a and
center % (focus). The transducer is immersed in an un-
bounded, homogeneous fluid with volume density of mass p,
compressibility «, and acoustic wave speed Cf=(Kp)_1/ 2,
The unit vector along the normal to % oriented toward the
focus is denoted by ». The oriented closed curve forming the
rim of .4 is denoted by J.4. The unit vector along the tan-
gent to d# is denoted by 7 ¥ and 7 form a right-handed
system. The focus of the transducer will be chosen as the
origin of a right-handed, orthogonal, Cartesian coordinate
system {x;,x,,x3} that is used to specify position in space.
The position vector from %# to an arbitrary point of observa-
tion &7 in the fluid is denoted by x and the one from % to a
point ¢Z on .4 is denoted by y. Further, R=x—y is the vec-
torial distance from (7 to 2. The vectorial spatial derivative
is denoted by V and the subscripts x and y on it are used to
indicate differentiations with respect to the coordinates of &7
and (7, respectively [Fig. 1(a)]. The time coordinate is ¢;
differentiation with respect to ¢ is denoted by J,.

The acoustic pressure p(x,t) of the radiated acoustic
wave motion is calculated by starting from its Kirchhoff—
Huygens representation in which suitable values of p(y,?), its
time derivative d,p(y,), and its normal derivative v-Vyp(y.t)
on .4 are to be substituted. The relevant representation is
given by

p(y,t—lRll(,‘f))

P(x0)= yeﬂ[_”'v"< TR

_vVy(y.r—|Rl/cy)
47|R|

}dA. D
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If now, the substituted values of p, d,p, and »-Vyp on 4 can
be continued away from .% such that they are compatible
with an acoustic wave motion in the surrounding fluid, the
result of the Kirchhoff-Huygens integration is not altered if
the actual integration is carried out over a surface differing
from 4, provided that the latter surface also has d_4 as its
boundary curve, and in between the two surfaces the inte-
grand is regular. Under these conditions, the expression for
the acoustic pressure at the point of observation is a func-
tional of the rim of the transducer only. Maggi7 has pursued
this idea in the theory of the Kirchhoff diffraction of light by
an aperture in a black screen and he seems to have been the
first to have carried out the transformation from surface in-
tegral to line integral explicitly for specific types of light
sources. A different approach to the relevant transformation
has been followed by Rubinowicz.® The corresponding deri-
vations can be found in Baker and Copson!! and in
Rubinowicz.® .

In our particular application the idea is to take the sub-
stituted values of p, d,p, and »-V,p on Z such that they are
compatible with a spherical wave motion converging toward
the focus .# of the transducer. With this Ansatz, the transfor-
mation from the surface integration over ./ to a line integra-
tion along its rim d.% can be carried out explicitly. In this
procedure, proper care has to be taken of the occurrence of
two singularities in the resulting integrand, viz., at % and at
P,

Although the entire analysis can be carried out in the
space-time domain, we shall use the time Laplace transform
domain analysis as an intermediate step. One reason for do-
ing this is that some of the formula manipulations can be
somewhat more easily carried out in this domain. On the
other hand, for some applications the frequency-domain
counterparts of the results may also be of interest and these
follow from the time Laplace transform domain expressions
upon replacing in the latter the transform parameter s by jw,
where j is the imaginary unit and w is the angular frequency
of a frequency-domain constituent of the acoustic wave. We
assume that the Huygens sources at .4 are active for t>0;
then the time Laplace transform of the acoustic pressure that
is causally related to them is given by

p(x,5)= f:o exp(—st)p(x,t)dt,

for se & with Re(s)>0. (2)

Under this transformation, Eq. (1) transforms into the
Helmholtz—Huygens representation

pxs)=|  [p(y,5)rV,G(xy,s)
ye b
—G(x,y,5)v-V,5(y,5)]dA, &)
in which
. _exp(—s|R|/¢cy)
G(X,y,s)—TiRl, )
and the property Vxé=—Vyé has been used.
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1I. THE MAGGI-RUBINOWICZ LINE INTEGRAL
REPRESENTATION FOR THE TRANSMITTED
ACOUSTIC WAVE FIELD

To model the action of the focused transducer with a
spherically curved radiating surface of radius a and center at
%, we substitute in Eq. (3) for the acoustic pressure and its
normal derivative on .4 given values that are compatible
with a spherical wave motion converging toward . The
time Laplace transform of the acoustic pressure of the latter
is taken as

exp[s(|yl—a)/cy]
|yl/a

where f’o(s) is the time Laplace transform of the value of

the acoustic pressure Py(t) at the transducer’s surface [yl=a.

The gradient of this expression follows as (note that v=—y/
ly| on .2)

Po(y,s)=Po(s) : (5)

s 1 ) xpls(lyl—a)led v o

cr v |yl/a Iyl

With this, the values of the acoustic pressure and its normal
derivative at the transducer surface follow as

vyﬁo=ﬁo<s)(

p=Py(s), at|y|=a, )
. s 1Y .
vV p=— pr— Py(s), at |y|=a. (8)

To transform the resulting integral over .4 at the right-hand
side of Eq. (3) into a line integral over 4.4, the surface of
integration is tentatively deformed into a cone % that has
d.% as its directrix and .% as its apex. In this procedure, the
singularity in po and Vyp, at . is excluded by the sphere
s of arbitrarily small radius & around %, In the limit 50,
the contribution from % is found to be

lim [ﬁO(yvg)V'vyé(X,Yas)
8-0JyeFs

= G(x,y,5)v-Vypo(y,s)1dA

expl —s(|x|+a)/c/]
|x|/a

Q.
=“E ol(s)

, for |x|#0, (9)

where () 4 is the solid angle under which . is viewed upon
from .%7. Along %, we have »-y=0 and hence »-V,p,=0.
To evaluate the remaining integral along %, a system of
oblique conical coordinates is introduced consisting of the
straight lines (generators) from % to any point on d.% and
the closed curves that arise from d.#4 by multiplying the
distance from .% to any point on d.-% by a factor of N, with
S<A<I1. Indicating the position vector from .# to any point
on 4.4 by # and the position vector from % to the point of
observation x by p, we have

for ye %, (10)
for ye %, (11)
while the vectorial elementary surface area on .% is given by

for ye %, (12)

y=A7n,
R=x—A\n,

vdA=dyX\Ardo=nd\X\Tdo,
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where do is the elementary arc length along J.4. With this,
the remaining integral over % becomes

f ﬁo(y,S)VVyé(x,y,s)dA
ye &

=1lim Py(s)
50 nedt

fl exp(s\|gl/c;—salcy) ( s 1
X N —_—
N5 N nl/a

(gx7do

cr IR|

R exp(—s|R|/cy)

R 47IR] A dA, 13)

in which
IR|=[(Ag—x)-(Ap—x)]"2=0. (14)

In the right-hand side of Eq. (13) the limit §—~0 can be taken
by just replacing the lower limit § of the integration with
respect to A by zero, provided that [x|#0. Further, we use the
fact that [cf. Eq. (11)] (X 7)-R=(xX n)- . Now, by straight-
forward differentiation, it can be verified that

d [exp(s)\|17|/cf—-s|R|/cf)}

| RI([9[R[+7-R)
s 1\ exp(s\|#l/c;~s|R|/cy)
(5wl R? ’ 9
where the relation
IR @=*0-R (16)
ON

has been used. Putting things together, we arrive at

expl —s(|x|+a)/cy] Py(s)
|x|/a 4

) Q4 .
p(x,5)=— T Py(s)
exp(—s|pl/cy)

<
neasl|pl(alpl+ n-p)
X(pxx)-rdo for |x|#0, 17)

exp[ —s(|x| +a)/c/]

|x](alx|+7-x)

in which p=x—# is the vectorial distance from a point of
integration 7 on d.% to a point of observation x and where
we have taken into account that |%|=a [Fig. 1(b)].

The right-hand side of Eq. (17) yields the expression for
the acoustic wave field radiated by the transducer as long as
the point & of observation is located outside the domain
bounded by .4 and .%. For points of observation located
inside this domain, the contribution from the singularity of G
at 97 has to be taken into account. This is done in the stan-
dard manner by surrounding &7 by a sphere of vanishingly
small radius and calculating the contribution from this sphere
upon letting its radius go to zero. The result is then

P(%,5)=po(x,5)

+right-hand side of Eq. (17), for |x|#0.

(18)
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When & is located on .%, i.e., on one of straight lines join-
ing the focus % with the rim 4.4, the acoustic wave field is
given by

P(x,5)=3po(x,s) + principal value of right-hand
side of Eq. (17),

for |x|#0. (19)

Equations (17)—(19) provide the Maggi—Rubinowicz line in-
tegral representations for the transmitted acoustic wave field
in the time Laplace transform domain. The corresponding
frequency-domain results for an exponential time factor
exp(jwt) are obtained by replacing in the right-hand sides of
Egs. (17)—(19) the time Laplace transform parameter s by
jo.

The time-domain results are obtained by applying to the
right-hand sides of Egs. (17)-(19) the shift rule of the
Laplace transformation:

Po(s)exp(—sT)—Po(t—T), (20)

where T is a time delay. The application of this rule to Eq.
(17) leads to

( t)__%Po[t—(lea)/cf]
PR =" |x|/a

+Lf ( Polt—|pl/cy]
47 J peoe\lpl(alpl+5-p)

B Polt—(|x|+a)/c/]

(pxx)-7do for |x|#0,

|x|(alx|+ 7-x)
21
while Egs. (18) and (19) transform into
p(x,t)=po(x,t)+right-hand side of
Eq. (21) for |x|#0 (22)
and
p(x,t)=3po(x,t) + principal value of right-hand
side of Eq. (21) for |x|#0, (23)

respectively. Note that in the time-domain expressions only
causal contributions occur since in all terms in our represen-
tation the time delay is non-negative.

For the final evaluation of the acoustic wave field, a
simple, one-dimensional integral over the rim .4 of the ra-
diating aperture .-% remains to be evaluated. In general, this
integration has to carried out numerically. In our expressions,
the position of the rim is most naturally expressed through its
parametric representation, where the Cartesian components
of 7 are given functions of the arc length ¢ along the rim. In
this form, the evaluation goes through for arbitrary shapes of
the rim.

For arbitrary shapes of the rim, the value of ) , will
also have to be determined numerically. For this, the expres-

sion
vy dA
Q =—f ——dA=f " (24)
. ye b ly® yesb |y]?

can be used, in which |y|=a.
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It is tempting to interpret the different contributions at
the right-hand side of Eq. (21) on the basis of their travel
times. The first line integral can then be considered as the
superposition of the contributions from the elementary parts
of the rim of the transducer. The first term on the right-hand
side and the second integral contain contributions with the
travel time ()x|+a)/c;, which is the travel time from the
point diametrically opposite (antipodal) to the projection of
the point of observation &7 on the sphere of which the trans-
ducer forms a part, with .% as center. In this interpretation
one has to realize, however, that the complete expression
quantifies the totality of the diffraction phenomena associ-
ated with the boundedness of the radiating surface of the
transducer and that each constituent does not necessarily rep-
resent an isolated phenomenon.

A. The acoustic wave field at the focus

The acoustic wave field at the focus is found by straight-
forward evaluation of Eq. (3), after having substituted Eqs.
(5) and (6). We obtain

QJg2sa A

PO=72 PO(S)CXP( - —f) 25)

The corresponding time-domain result is

0= 2e2a o, 8 26
P(J)—E;;rot o) (26)

where the property s—d, has been used. Note that in the
right-hand side of Eq. (26) the time derivative of the pulse
shape P(t) occurs, whereas Eqs. (21)—(23) consist of super-
positions of properly weighted and retarded actual pulse
shapes distributed over 4. A similar result worked out for a
focused transducer with a circular rim has been derived in
Ref. 4. Here, it is expressed in terms of the solid angle under
which the transducer surface of arbitrary rim is viewed from
the focus.

B. Acoustic wave field expressions in terms of the
particle velocity at the transducer’s surface

So far, the radiated acoustic wave field has been ex-
pressed in terms of the value of the acoustic pressure 130(s),
or Py(t), at the transducer’s surface. This pressure is related
to the normal component (along ») of the particle velocity
Vo(s), or Vy(t), on this surface via (note that the corre-
sponding wave motion is converging towards %)

Ao Lfs 1Y
Vo(S)—p*S“ o a Py(s) (27)
or
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Py(s)=pcj Vo(s). (28)

l(s 1)—1
14— —=
a Cf a

The time-domain counterpart of the latter expression is

cr
Po(t)=pcy| Vo(2)+ "

X f:lzo exp( —Cf%_—i—)—) Vo(t’)dt’]. (29)

ll. ALTERNATIVE EVALUATION OF THE
KIRCHHOFF-HUYGENS SURFACE INTEGRAL

An alternative reduction of the two-dimensional
Kirchhoff-Huygens surface integral to a one-dimensional
one is obtained by proceeding along the lines that Faure
et al.® have followed in the evaluation of a Rayleigh integral
applied to a curved transducer mounted in an infinite rigid
baffle. For our case, this method consists of first introducing
a spherical coordinate system {a,#, ¢} for points on the
transducer’s surface with the polar axis along the line from
F to & and ranges of integration that are a subset of
{0<sb<m,0<¢p<2m}. Then,

[R|?=|x]|%+a%—2|x|a cos(8). (30)

Using this equation to introduce |R| instead of 6 as a variable
of integration, we have

|R|d|R|=|x|a sin(8)d 6 (31)
and

a|R|
dA=a? sin(0)d0 dp= T d|R|d . (32)
Now, for the integrand at hand, the integration with respect
to |R] at fixed ¢ can be carried out explicitly. The different
steps for this are given below.
In the first term on the right-hand side of Eq. (3) we
need the result

»-V,G=(9)g/G)v-(—R/|R])
=(— ﬁlRlé) w. (33)
2a|R|
Integration by parts then yields

R R
j' l v-VyGa2 sin(#)d 6
Rlnin '

|R’max -~ a|R|
= | Vs T IR

Imm l |

r: [[ G(IRI?+a?~ x| g

I (IRlmax 4
o7 i GIRIdIR] 34

Rl iin

where [R|,;, is the value of |R| at the minimum value 6, of
6 and |R|,,, is the value of |R| at the maximum value 6, of
6 in the range of the integration with respect to 6.
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For the second term on the right-hand side of Eq. (3) we
need the result

N | 'max

— Ga? sin(8)d 6
'leln

| Imnx,\ aiRl
- f ¢ MRy
Ria 1K

lxl[ exp(— s|R|/cf)]i§}2;x. (35)

Putting things together, we end up with the expression

130(.5’) ¢max(
p(X,5)= —[(|R]|+a)*—|x]?
p(x,5) 2|X| oo [(l I ) I l 1
TR ¢
|R|=[R| ;in(#)
for |x|#0. (36)

where the ranges of integration follow from the specification
of the rim of the transducer’s radiating surface. For Eq. (36)
to hold, the range of integration in Eq. (3) must, if necessary,
be subdivided into parts for which the mapping from y on
ly|=a to 6 and ¢ as variables of integration is one-to-one.
This subdivision depends on the location of the point of ob-
servation.
The time-domain counterpart of Eq. (36) is

1 ¢mﬂx
px= 7 [ -t -

R ax( )
d¢ for |x]#0. (37)
IRl min(#)

47|R|

In practice, the whole procedure can only be carried out
for rims whose specification allows for an analytical expres-
sions for |R| () and |R|.(®), as well as ¢y, and Ppqy -
For this reason we have based our further computations on
the more general result given in Sec. II.

IV. THE WAVE FIELD TRANSMITTED BY A
SPHERICAL-CAP TRANSDUCER

In this section we present the results for a focused trans-
ducer as considered in Sec. I in the case where the rim is a
circle of diameter d<<2a (spherical-cap transducer). The
semiangle 6 , included at the apex of the circular cone with
F as its center and the rim as its directrix is then given
through

sin( 8 ) =d/2a. (38)
It is assumed that 6 ,</2. Then
cos(6_,)=[1—(d/2a)*]""2. (39)

First, we evaluate the solid angle €} ;. Introducing the angle
@ included between the axis of symmetry of the transducer
and the position vector from the focus to a point of integra-
tion on the transducer’s surface as the variable of integration,
we obtain
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FIG. 2. (a) Circular rim for spherical-cap transducer. (b) Projection of
spherically curved rectangular-strip transducer showing horizontal (Rj) and
vertical (Ry) strips of rim. ' b

9

Qﬁ=2wf /Z sin(0)do=27[1—cos(6 )].  (40)
To carry out the integration along the rim of the aperture, we
employ polar coordinates in the plane of the circular rim.
Since the transmitted wave field is rotationally symmetric
around the axis of the transducer, we can without loss of
generality take the point of observation in the x,, x5 plane.
Correspondingly, let the point of observation (position vector
x) have the Cartesian corodinates {X,0,Z} and let the
Cartesian coordinates of an integration point (position vector
1) be {a sin(8 z)cos(¢p),a sin(f ,)sin(¢),~a cos(6 ,)}; then
[Fig. 2(a)]

J cdo=a sin(0dg)fzw cdg, (41)
ned A $=0 ‘

while
|pl={[X—a sin(8 _z)cos($)1*+a? sin*(6_,)sin’*($)+[Z

+a cos(6 517112, (42)

n:p=n-x— n-p=Xa sin( 0 _z)cos( ) —Za cos( 0 5)—a?, '
(43)
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|x|=(x*+2%)'72, (44)
7-x=Xa sin( 8 _z)cos( ) —Za cos( 6 4), (45)
xX 5 7=Xa cos(P)cos( 8 z)+Za sin(6 ). (46)

Using these expressions in the right-hand sides of Egs. (17)-
(19), the integration with respect to ¢ is to be carried out
numerically. As a check on the accuracy of the result, we can
use the expressions for the transmitted wave field on the axis
of the transducer. This wave field can be determined explic-
itly, from both the Kirchhoff—Huygens representation over
the surface of the transducer and from the line integral Tep-
resentation along the rim of the transducer, and therefore
yields in itself a check on the whole procedure of transform-
ing the surface integral into a line integral.

A; The transmitted acoustic wave field on the axis of
the transducer '

1. Evaluation of the Kirchhoff-Huygens integral

n

The Kirchhoff-Huygens integral is evaluated by using
the polar angles ¢ and @ as the variables of integration.
Then, x={0,0,Z}, y=—aw, with w={-sin(6)cos(¢),
—sin{6)sin(¢),cos()}, and R={—a sin(8)cos(¢),—a sin(6)
Xsin(¢),Z+a cos(6)}. Hence '

v-R=a+Z cos(6), 47
IR|=[2Z2+2Za cos(8)+a*]'?, (48)
IR|  Za sin( 6) A

0 R “9)

Introducing in the resulting integrals |R| as the variable of
integration and carrying out the integrations, we obtain

0.0.2.0) = (R,+a)?—27> » R\ a
p(0,0, J)—T ")z
- XPo(t—RC/Cf)H(Z+a) for Z?EO,
(50)

where H denotes the Heaviside unit step function,
R,=[Z%*+2Za cos(6 ,)+a*]'"? (51)

is the distance from the rim to the on-axis point of observa-
tion, and

R.=|Z+a| (52)

is the distance from the center of the transducer surface to
the on-axis point of observation. Note that at Z=—a the
second term on the right-hand side is discontinuous and re-
produces the jumps across the surface of the transducer in the
acoustic pressure and its normal derivative from zero to the
values prescribed by Egs. (7) and (8), a reproduction which
is in accordance with the Kirchhoff theory of diffraction and
that for Z<—aq, i.e., behind the transducer, the second term
on the right-hand side yields a vanishing contribution, which
implies that the entire diffraction phenomenon is attributable
to the rim. ‘

As Z—0 (i.e., at the focus of the transducer), the limit-
ing behavior follows from Eq. (50) as
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p(0,0,0,t)=(alc)[1—cos(0 4], Po(t—alcs), (53)

which, in view of Eq. (40), is in accordance with the general
result of Eq. (26).

2. Evaluation of the integral along the rim

Using in Eqgs. (21)-(23) the values for the quantities
listed in Egs. (42)—(46) for X=0 and recalling that the re-
sulting integrand is independent of ¢, Eq. (50) is again ar-
rived at,

3. Alternative evaluation of the Kirchhoff-Huygens
integral

Also, evaluation of Eq. (37) leads to Eq. (50).

V. THE WAVE FIELD EMITTED BY A SPHERICALLY
CURVED RECTANGULAR-STRIP TRANSDUCER

The spherically curved rectangular-strip transducer has a
radiating surface whose projection on a plane perpendicular
to the axis of the transducer has the shape of a rectangle. The
dimensions of this rectangle are taken to be 2b in the x;
direction and 2¢ in the x, direction. Its rim then consists of
the following two “horizontal” circular arcs [Fig. 2(b)]:

m=%b, myt+mi=a"~b ' (54)

and the two “‘vertical” circular arcs

2 2

77%+ 77§=a —c*, . (35)

M=,
and its four corners are
m=—(a>=b*=c)"%  (56)

For the strip to exist, the condition b?+ ¢*<a* must be sat-
isfied. A similar geometry has been investigated in Ref. 6.

To carry out the integration along the rim, the circular
arcs in the four planes that bound the rectangular strip are
parameterized by introducing an angular polar variable in
each of the two planes. For the “upper horizontal” circular
arc we take

771=ib9 m==c,

771:b’

16
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FIG. 3. Plot of t,,/t, as a function of v as given in Eq. (75).
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7= (a?~b*)"? sin($p), (57)
73=—(a*=b*)"? cos(¢p),

for _aH<¢H<aH,

with

ay=sin"[c/(a®~b2)2], (58)
in terms of which

7={0,cos( ), sin( )} | (59)
For the “lower horizontal” circular arc we take

m=-b, ;

M= —(a?—b*)" sin( ), | (60)

m=—(a’=b%)'" cos(¢p),

for —ay<ody<ay,

with .

ag=sin"[c/(a*-b2)?], (61)
in terms of which

7={0,—cos(¢y),sin(dp)}. (62)

For the “front vertical”’ circular arc we take
m=—(a®—cH)"? sin(¢y),
m=c, (63)
73=—(a®=c®)!"? cos(py),

for — (Iv< ¢V< xy,

with

ay=sin"'[b/(a®—c?)\1?], : (64)
in terms of which '

7={—cos($y),0,sin( by)}. (65)

For the ‘“‘rear vertical” circular arc we take

(a)
~2 -1 0 .
! time (ﬁs) —3 4 5
spectral amplitude
oF ;
A 20
(b)
__40 ) ' t
10 ’ 10"

10
frequency (MHz) ——

FIG. 4. (a) Signal and (b) corresponding spectral amplitude used for nu-
merical results. Parameters: fo=2 MHz, v=2, a=5.71X10% s~!, Corre-
sponding rise time and time width: 1,=0.35 ps, £,,=0.65 us.
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F#1 (a) Z=-38.1mm

radial distance (mm)
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(b) Z=Omm (on focus)
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FIG. 5. Gray-scale image of amplitude of radiated signal from circular rim
transducer, as a function of time and radial distance at three different ranges
from aperture; Z indicates range along aperture axis. Parameters: a=76.2
mm, d=76.2 mm (F/1: this pertains to a strongly focusing transducer).
Numerical noise shown as tails to arrivals is due to high saturation of the
images introduced to highlight radial moveout of signal. Note that different
time windows and amplitude scales are used in these figures.

m=(a*—c*)"? sin($y),
7= —C, (66)
m=—(a>—c?)'? cos(¢y),
for— ay<dy<ay,
with
ay=sin"'[b/(a®~cH)"?], (67)
in terms of which
7={cos(¢y),0,sin(¢y)}. (68)

The solid angle €} , is given by
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Circular rim: F/1
X=0mm

(a) Z=-81.3mm
021} R ]

30 35

25 30 35
(¢) Z=-7.62mm

5 C+R :

45 ‘ 50 55
'(d)Z:Omm ‘

{C,R}

-50—— s : : -
48 50 52 54 56

(e) Z=38.1mm

74 76 78 80 82
time (us) —»

FIG. 6. Amplitude of radiated signal by F/1 transducer for observations
along the aperture axis Z. Plots show signal strength and shape at various Z.
Parameters as in Fig. 5. Letters C and R indicate part of the terms in Eq. (21)
establishing the corresponding arrivals [see discussion after Eq. (24)]. C is
associated with the travel time (|x|+a)/c; and R with (|p})/c;. Both rim
integration and on-axis closed-form expressions yield indistingunishable
curves. Note that the signal strength behind the aperture (Z=—81.3 mm),
due to rim diffraction, is relatively small but nonzero [see discussion fol-
lowing Eq. (50)].

dY1 dy,

fyv—bfyf—c (a? _)’1

The expression at the right-hand side of Eq. (69) is evaluated
by numerical integration.

)1/2 (69)

VI. NUMERICAL RESULTS

In this section, numerical results are presented for a
spherical-cap transducer and for a spherically curved
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FIG. 7. Same as in Fig. 6, but for observation positions moved out from
axis. Superscripts + and — indicate closest and farthest parts of the circular
rim establishing the arrivals.

rectangular-strip transducer. In all cases the exciting acoustic
pressure at the transducer’s surface will be taken to be the
causal, amplitude-modulated sinusoid

Po(t)=A(1)sin{wyt) for wy>0, (70)

where the modulating amplitude function is given by

A(t)=(a7t)vexp(—at+v)H(t) for >0, >0,
(71

For »=0 the amplitude function has to be replaced by
exp(— at). The oscillatory pulse has three adjustable param-
eters, of which w, is determined by the center frequency
Sfo=wo/2m, while o and v are related to the rise time ¢, and
the width r,, of the modulating amplitude. The pulse ampli-
tude rise time is defined as the value of ¢ where A(¢) reaches
its maximum value; it follows from Eq. (71) by putting the
derivative equal to zero as

t,=vla. (72)

Att=t,, we have A(¢,)=1. The pulse amplitude time width
is defined as

t,= fz:OA(t)dt' (73)

Substituting Eq. (71) in Eq. (73) and carrying out the inte-

gration, we obtain
T'(v+1)exp(v)

ty=—————.

w

(74)

va

From Egs. (72) and (74) it follows that
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Rectangular strip
X=0mm, Y=0mm
(a) Z=-50.8mm
0.5 .
0 A
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FIG. 8. Amplitude of radiated signal by the rectangular-strip spherical trans-
ducer for observations along the aperture axis Z. Plots show signal strength
and shape at various Z. Parameters: ¢=101.6 mm, b=50.8 mm, c=25.4
mm (this rectangular transducer is equivalent to an F/1 along the vertical
direction and to an F/2 along the horizontal direction). Letter C has the
same convention as in Fig. 7. Ry are shown in Fig. 3(b) and indicate parts
of the rectangular rim establishing the corresponding arrivals; when both +
and — parts have an equal arrival time, the superscript is omitted.

t, T'(v+1)exp(v)
;:— BT B (75)

i.e., the parameter v is determined by the ratio of the pulse
amplitude time width and the pulse amplitude rise time. Fig-
ure 3 illustrates this relationship.

The time derivative of the pulse (which is needed for the
evaluation of the wave field at the focus of the transducer) is
found as

3,Po(1)=[9,A(t)sin{ wot) + woA(t)cos(wot) [H(2).
(76)

Upon introducing the time-dependent phase angle = y(t)
through

AN ={[IAMP+[wAO T} sin[y(n)],  (77)

wot ={[2,A(1) >+ [ woA ()]} cos[ Y(1)], (78)

the right-hand side of Eq. (76) can be cast into the shape of
an amplitude- and phase-modulated signal, viz.,
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FIG. 9. Same as in Fig. 8, but for observation positions moved out from the
axis along the vertical X direction.

3Po() ={[3A (D) +[weA (1)}
X cos[ wot — () |H(2). (79)

To quantify the focusing power of the transducer, we intro-
duce its focal enhancement factor Iz as the maximum value
of the modulating amplitude in the right-hand side of Eq.
(79). Differentiation with respect to ¢ of the latter quantity
shows that for the practical case where PA(D) + wiA(1)>0,
ie., wy>al/(v—1)" and v>1 for our case, there is only a
single maximum at =, whose value is wy. Using this value
in the expression of Eq. (26) for the acoustic pressure at the
focus, the focal enhancement factor is found as

Q s2wpa Oy 4d7foa
b e

—_——= . 80
cr 47 ¢ (80)
Note that this result holds for a focused transducer with an
arbitrary rim.
The time Laplace transform of Eq. (70) is given by

Bo(s)=(112))[A(s+a—jwy) —A(s+a+jwy)], (81)
in which Eq. (71) gives

R a\* T'(v+1)
A(S)=(*) —77— exp(¥). (82)
v s
The spectral plot that shows log(|Py(jw)| as a function of
log(Jw|) for @>0 shows a slope of —(v+2) as |w|—.
For our numerical results the values f,=2 MHz, v=2,

and @=5.71%10° s, corresponding to t,=0.35 us and
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FIG. 10. Same as in Fig. 8, but for observation positions moved out from
the axis along the horizontal ¥ direction.

t,=0.65 us, have been selected. The corresponding pulse
shape and its spectral amplitude are shown in Fig. 4(a) and
(b), respectively.

A. The spherical-cap transducer

For arbitrary points of observation the right-hand side of
Eq. (41) is evaluated by applying a trapezoidal integration
rule, while the closed-form on-axis result of Eq. (50) has
served as a check. With a uniform discretization of the rim
integral into intervals of one and a half degrees, the two
on-axis waveforms obtained were indistinguishable. For ob-
servation points close to the surface of the cone % that has
d4 as its directrix and S as its apex [see Fig. 1(b)], a more
refined discretization is needed. The computation times in-
volved were in the order of seconds on a workstation. Trans-
ducers of various degrees of focusing were considered. As an
illustration, we present results for a highly focused one with
an F number [F/(a/d), following the conventional notation
in ultrasonics'®] of F/1. The transducer parameters are a=d
=76.2 mm. Figure 5 shows an image of the events involved
(superposition of a pulse with a travel time from the center of
the transducer and a pulse with a travel time from the rim of
the transducer), while Figs. 6 and 7 show actual waveforms
at positions in various planes perpendicular to the axis of the
transducer, viz., in a plane behind the center of the transducer
[plot 6(a)], in planes in between the center of the transducer
and its focal plane [plots 6(b), 6(c), and 7(a)], in the focal
plane itself [plots 6(d) and 7(b)], and in planes beyond the
focal plane [plots 6(e) and 7(c)]. Because the physics of tran-
sient radiation from circular rims has been reported exten-
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sively elsewhere (see, for example, a good account in Ref.
4), we have reduced the description of these figures to the
minimum included in the corresponding captions. The em-
phasis here is put on the versatility and computational effi-
ciency of the solutions presented which allows for plotting
and study of the transducer focusing properties and its de-
pendence on the rim geometry. The focal enhancement factor
for this transducer follows from Egq. (80) as I'=86.7.
It should be noted, in particular, that unlike the present
solution, the results based on the Rayleigh integral
representation’ ™ do not yield the diffracted wave field be-
hind the transducer.

B. The spherically curved rectangular-strip
transducer

A transducer of this kind has also been analyzed by Ref.
6. We have taken the following dimensions: a=101.6 mm,
b=50.8 mm, and ¢=25.4 mm. The rim integral is evalu-
ated as indicated above. Numerical results are shown in Figs.
8-10 with the corresponding parameters and comments
given in their captions.

Vil. CONCLUSIONS

The transient acoustic wave field radiated by a focused
transducer with a spherical radiating surface is evaluated by
applying the Maggi—Rubinowicz transformation to the
Kirchhoff—-Huygens representation of the wave field. This
transformation results in a line integral representation along
the rim of the radiating aperture that holds for a rim of arbi-
trary shape, and for both planar and nonplanar radiators. The
computation time needed to evaluate this (one-dimensional)
integral is in the order of seconds on a standard workstation.
For any shape of the rim, a simple time-domain expression
for the acoustic pressure at the focus is also derived. Based
on this expression we introduce a time-domain focal en-
hancement factor that characterizes the focusing properties
of the transducer. The factor only contains the solid angle
under which the transducer surface is viewed from the focus,
the radius of the radiating spherical surface, the center fre-
quency of the input signal, and the acoustic wave speed of
the surrounding fluid. The expression holds for a general
class of amplitude-modulated sinusoidal carrier waveforms
of the initially launched acoustic pressure. For the transducer
with a circular rim, a closed-form analytic expression is
given for the on-axis acoustic wave field. This expression
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serves as a check on the accuracy of the numerical integra-
tion along the rim. Numerical results are presented for the
transducer with a circular rim and for a spherically curved
rectangular-strip transducer. Our analysis illustrates the ver-
satility of the obtained rim integral representation. For ex-
ample, this representation is ideally suited for modeling the
action of a focused transducer as a source of acoustic radia-
tion in more complicated geometries.
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