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Abstract.

A new inversion algorithm for the simultaneous reconstruction of

permittivity and conductivity recasts the nonlinear inversion as the solution of a
coupled set of linear equations. The algorithm is iterative and proceeds through the
minimization of two cost functions. At the initial step the data are matched through the
reconstruction of the radiating or minimum norm scattering currents; subsequent steps
refine the nonradiating scattering currents and the material properties inside the
scatterer. Two types of basis functions are constructed for the nonradiating currents:
“invisible’’ (global) basis functions, which are appropriate for discrete measurements
and nonradiating (local) basis functions, which are useful in studying the limit of
continuous measurements. Reconstructions of square cylinders from multiple source
receiver measurements at a single frequency show that the method can handle large

contrasts in material properties.

1. Introduction

Most practical algorithms for inverse scattering
assume that the scatterer is a small perturbation of
a known background medium. Included in this
category are the ordinary and distorted wave Born
approximations, either when used in a single, linear
imaging step or in an iterative, nonlinear search for
the best model [Habashy and Mittra, 1987]. Pertur-
bative methods have difficulty when the perturba-
tion is large, that is, when the scatterer is large in
size or when its material properties differ from
those of the known medium by a large amount [e.g.,
Kleinman and van den Berg, 1990a, b].

This paper describes some improvements in an
inverse scattering algorithm that we call the source
type integral equation or STIE method [Habashy et
al., 1992; Caorsi et al., 1992, 1991, 1990; Bolomey
et al., 1991; Ney et al., 1984]. These improvements
attempt to deal with large perturbations in material
properties. We will describe the method for a mul-
tiparameter inverse problem in scalar electromag-
netic scattering, but it applies to any scattering
problem governed by the scalar or vector Helm-

Copyright 1994 by the American Geophysical Union.

Paper number 93RS03448.
0048-6604/94/93R S-03448%08.00

holtz equation. In any scattering problem, both the
field measured outside the scatterer (the data) and
the (unknown) field inside the scatterer can be
related by a linear integral equation to equivalent
sources in the scatterer. In electromagnetics the
equivalent sources are usually called scattering cur-
rents. The scattering currents are, in turn, linearly
related by a constitutive equation to the field inside
the scatterer and the difference in material proper-
ties between the scatterer and an arbitrary back-
ground medium. The STIE method tries to solve the
nonlinear inverse scattering problem for the mate-
rial properties by inverting these two linear rela-
tions (the global integral equation between the field
and its sources and the local constitutive relation
between the sources and the material properties) in
two separate steps.

To motivate this approach, consider first a naive
application of the method. In the naive STIE
method the integral equation between the field and
the scattering currents is inverted to obtain the
scattering currents from the data (the field outside
the scatterer). This first step involves the solution of
a linear inverse source problem. Next, the field
inside the scatterer is computed using the scattering
currents obtained from the first step. This second
step is just the linear computation of a field given its
sources. Finally, the scattering currents are divided
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by the field computed inside the scatterer to give the
material properties. In principle, this procedure
solves the nonlinear inverse scattering problem by

direct linear methods, without assuming that the

contrast in material properties is small.

Obviously, the naive STIE method cannot always
work perfectly. It is defeated by the nonuniqueness
of the inverse source problem that must be solved
to obtain the scattering currents from the data.
Inverse source problems are nonunique because of
nonradiating sources [Devaney and Wolf, 1973;
Bleistein and Cohen, 1977]. In electromagnetics,
nonradiating sources are currents that generate zero
electric and magnetic field outside their domain of
support. If the currents induced in a scattering
~ experiment include any nonradiating currents, then

the data contain no information about these cur-
rents, and it is therefore impossible, without other
information, to reconstruct the full scattering cur-
rents and the full field inside the scatterer with a
linear inversion. Moreover, this nonuniqueness
cannot be overcome by simply adding more exper-
iments (different incident fields and frequencies)
because the induced scattering currents change
with the incident field and the frequency. Each new
experiment increases the nonuniqueness rather
than reducing it.

Nevertheless, it is known that inverse scattering
problems with multiple experiments can have
unique solutions [Devaney and Sherman, 1982].
The reason is that, although the scattering currents
change with each experiment, the unknown mate-
rial properties do not change (the material proper-
ties of a linear medium do not depend on the
incident field, and often their frequency dependence
can be given a simple explicit form). The combina-
tion of different incident fields or different frequen-
cies makes the inversion for the material properties
a well-posed, but nonlinear, problem. The naive
STIE method must be modified (‘‘renormalized’’)
to incorporate this feature [Habashy et al., 1990;
Habashy and Dudley, 1989a, b]. The resulting algo-
rithm is iterative but appears to be computationally

" efficient for large perturbations. An important part
of the STIE method described here is the construc-
tion and use of explicit basis functions for the
nonradiating currents. Although these currents con-
tribute nothing to the data, they are needed to
maintain the field inside the scatterer consistent
with its material properties. In fact, with the STIE
method the data is inverted only once for the

unknown region
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Figure 1. Schematic of the inversion problem.

radiating currents; subsequent iterations refine just
the nonradiating currents.

2. Basic Equations

Figure 1 shows the two-dimensional (2-D) geom-
etry that we will use to illustrate the STIE method.

-The position vector in the 2-D plane will be denoted

by 7= x% + zZ. We limit ourselves to the transverse
electric (TE) polarization with an electric line cur-
rent source of unit strength, situated at 7, = x, % +
2,2 (z,, = 0) and extending fromy = —oto y = +.
The nonzero field components are then H,., H,, and
E,, which are functions of x and z only. We assume
an exp (—iwt) time dependence for these fields,
where o is the (angular) frequency.

The governing equation for the electric field E =
E, is then

VZE(f, Fn) + kz(F)E(F, fn) = _iwl“"OJ(f’ Fn),
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where J(7, 7,,) = 8(F — 7,) is the impressed current,
KXF) = 0*wos(F) + iwpoo(F),

&(F) is the electrical permittivity, o(7) is the electri-
cal conductivity, and puq is the electrical permeabil-
ity (assumed to be constant). To develop the basic
equations further, we assume that the medium
consists of a homogeneous background with known
permittivity e, and conductivity o3, in which is
embedded an unknown region which extends from
z = 0 to z = L. The unknown region includes the
scatterer but is not necessarily limited to it. We also
assume that measurements are available continu-
ously along the line z5 = 0 from x = — to x = +oo,
Appendix A shows how to develop the equations
for discretely sampled fields.

The electric field can be split into a background
field E; and a scattered field E|,

E(F9 Fn) = Eb(F, Fn) +ES(F’ Fn)- 1)

The equations for E, and E are

V2Ey(F, Fy) + kiEy(Fy ) = —iwpoJ(F, Fa), @
V2E(F, F) + kpE(Fy 7) = —iopod (7, ), 3)
where

ky = 0 uoep + iopgoy “

and J(7, 7,) is the scattering current,
J5(F, ) = QO EGF, Fy), &)
with
Q) =[o(?) — op] — iwle(F) = &5). (©)

Q() is the unknown to be determined and is related
to the difference in the electrical properties &(7) and
o(F) between the inhomogeneous region and the
background.

Equations (1)-(3) are equivalent to the integral
equation [Kong, 1986]

L ]

E(F, 7y) = Ep(F, r'n)+f dz’J dx' g(F, 7')J(F', 7)),
0 —0

@)

or

L [=5]
E,(, ) = f dz f dx' g7, 7)), 7, ®
0 —~c0

1103

where g(7, 7') is the two-dimensional Green func-
tion,

Wi
97, 7') = ——= HE ko= 7)), )

which satisfies

V2(F, F') + k2g(F, 7') = —iwuweS(F— 7). (10)
and E, (7, 7,) = g(F, 7,,). Equations (5) and (7) are the
basic equations of the STIE method. Equation (7)
(or (8)) is the global integral relation between the
field and the scattering currents, whereas (5) is the
local constitutive relation between these two quan-
tities and the material properties. Equation (8) ap-
plies whether the observation point 7 is inside or
outside the scatterer and will be used in two ways:
first, as an integral equation to be solved for J;
given the field £, measured outside the scatterer,
and second, to compute the field E inside the
scatterer given an estimate for J.

In the geometry of Figure 1, the above equations
can be reduced to one-dimensional equations, often
having explicit solutions, by a Fourier transforma-
tion along the x direction:

E(kx5 2, Fn) =Edb(k)c: Z, Fn)

L _-
+f dz’ G(kxs z, ') slky, 2/ Fn)’ 11
0
where
Ey(kys 2, 7n) = Glky, 2, 2,)e " Hen, (12)
_ 1 (o .
By, 2, 7) = — f dx e B F),  (13)
27 ) _,,
- 1 fo ,
To(kyy 2, Fy) = — J dx e ] (F, 7). (14)
27 | _,

G(k., z, ') is now the one-dimensional Green
function,

Wiy ,
Gll, 2, 2) = = D gkl =2, (15)
bz
which satisfies
d2
[Zi? + ki, |Glkx, 2, 2) = —iopedz — 2),  (16)
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where
kz, = ki — k2. (17)
In general, k, is complex,
ky, = kj, + ik',, (18)

with kj,, = Re {k;,} and k}, = Im {k;,} = 0. For any
k., (11) corresponds to an excitation by a plane
wave whose wavenumber has the components &,
along the x axis and kj, along the z axis.

3. Inverse Source and Scattering
Problems

When coupled in the inverse scattering problem,
by substituting (5) into (7), these basic equations
become a single nonlinear equation for Q, because
the total field E inside the scatterer, which multi-
plies O, is unknown and depends on Q. The STIE
method keeps these equations separate and treats
the nonlinear inverse scattering problem in two
steps. The first step is the inversion of (8) for the
induced scattering currents J using the fields mea-
sured outside the scatterer. The direct inversion for
J, is a linear inverse source problem. The second
step is the calculation of a consistent electric field E
and material properties Q inside the scatterer. This
section describes the solution of the inverse source
problem.

Inversion for J (7, 7,,) is conveniently done in the
k, domain with (11), rewritten to relate the scat-
tered field along the measurement line zy to the
scattering currents,

L — -
f 42’ Glles, 20, 2)Tlks, 25 ) = Byl 20, 7). (19)
0

The scattered field recorded along the line z,
Es(kx': 20, Fy) = E(kxa 20, Fy) — Eb(kxa 20, Fn)s (20)

will be called the data. Equation (19), which is an
-integral equation of the first kind for the z depen-
dence of J, (at each k, and each source position 7,,),
does not have a unique solution. The nonunique-
ness is easily shown by substituting for J, a function
of the form

jR(kx’ Z, Fn) =j(kxs Fn)f(kxa Z, Fn)’ (21

and rearranging, which gives

Jky, Fp) = Es(kx, 20, ), (22)

Flky, 7,)

provided

L
Fll, 72) = f dz’ Glles, 20, 7) f ks 2, F) @3)
0

is not zero. Thus the function

Es(kx, 20, Fn)

f k! ’— =
wlke o) = =505y

fllx, 2z, 7)) (24)

solves (19). Obviously, there are infinitely many of
these solutions, and because the equation is linear
the difference of any two of them is a current
distribution that gives zero field along the measure-
ment line z5. We call such a current distribution
nonradiating and denote it by J, NR it satisfies

L _
f dz' Glls, 20, ) Tamlhs, 2, ) =0, (25)
0

The set of all solutions to eq. (25) is called the
annihilator of the kernel G(k,, z,, z'). Clearly, an
arbitrary linear combination of elements in the
annihilator can be added to any particular solution
of (19), and the result will still satisfy (19). Thus the
data E (k,, zy, 7,,) contain no information about the
part of the induced current distribution J, that
belongs to the annihilator.

A particular solution of (19) can be constructed
by imposing additional conditions. An example is
the solution that has the smallest L, norm,

”fs(kx’ 2, Fn)nz = (fs(kx, Z, ), j:r(kx’ Zs Fn»
L T 2
- J' dz T, ks, 2, )|
0
This minimum norm solution is obtained by setting
f(kx, Z’, fn) = G*(kxs 205 Z/); (26)

in (24), where the asterisk denotes complex conju-
gation. The minimum norm solution is thus

Es(kxs 205 )

NZ(k ) G*(k)n 20, Z')’ (27)

fMN(kx’ Z” Fn) =

where
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2 L
N*ky) = j dz" |Gk, 2o, 2')| (28)
0

In the spatial domain,

thJv=f dl; e

—e0

N*(k,)
° G*(kX! 20 Z,)Es(kxy 205 Fn), (29)

which becomes a convolutional integral,

thm=f dx' T(x - x', DB, 20, F)y  (B0)

—00

where I'(x — x', z) is the ‘‘pseudoinverse’’ of g(x,
29, 7') given by

1 [ ‘. ,
1“(36’,z’)=gf_ao dky €™ N G*(ky, 20, 2').  (31)

Equation (29) for Jyn can be interpreted as the
backpropagation of the scattered field (weighted or
filtered by 1/N?) from the measurement line z, into
the background medium. Appendix B discusses
other properties of the minimum norm currents and
their relationship to the actual induced currents.

The minimum norm solution of (29) is an expan-
sion of the scattering currents Jyy in the basis
functions G*(k,, zg = 0, z) (which are indexed by
k,). These basis functions can not, in general,
represent fully the actual scattering currents. The
scattering currents will usually have a nonradiating
part Jyg, which must be included to solve the
original inverse scattering problem. Thus the gen-
eral solution of (19) is a linear combination of the
minimum norm solution and an arbitrary nonradiat-
ing source,

‘f?(k.x’ 25 Fn)z‘TMN(kxs <y Fn)+TNR(kxa Z, Fn)’ (32)

where Jyg(k,, z, 7,) is a weighted superposition of
the solutions to (25). The L, norm of this general
solution is

- - Y
”Js(kx: Z, Fn)”2 = ”JMN(km 25 Fn)HZ + ”JNR(kx’ Zs Fn)“2>
(33)

which follows because Jyy is orthogonal to any
nonradiating source; indeed,

Et(kx’ 20, Fn)

L — = Voo
f dZ, Jﬂle(kJn z, rn)JNR(kx, 2z, rn) - Nz(kx)

0

L -
..[ dz’ G(kx’ 20> Z,)JNR(kx’ Zl} Fn) =0. (34)
0

Equation (33) shows explicitly that Jp,y is the
solution of (19) with the smallest L, norm and
excludes all elements of the annihilator.

According to (29), the minimum norm part of the
general solution is uniquely determined by the data.
The nonradiating part will have to be fixed by
considerations beyond the inversion of (19). This
will be discussed in the next sections.

4. Electric Field Inside the Scatterer

The second step in the STIE method is the
determination, inside the scatterer, of an electric
field and material properties that are consistent with
the incident field and the minimum norm scattering
currents obtained by inverting the data. Equation
(11) and the results of the previous section show
that the electric field inside the scatterer should be
split into three terms: the background or incident
field E,, the field generated by the minimum norm
scattering currents E,zy, and the field generated by
the nonradiating scattering currents Eyg:

E(kx’ 2, Fn) = Eb(kx’ 25 Fn) + EMN(kx; 2, ’_'n) -
+ENR(kxa 2, Fn)~ (35)

Note that Enp, the electric field of the nonradiating
scattering currents, will be nonzero inside the scat-
terer. Each of these electric fields can be computed
by operating on their current distributions with the
Green function; specifically, for Exg and Eyy,

—~ L -

ENR(kx’ <, Fn) = f dz’ G(kx, Z, ZI)JNR(kxs z', Fn),
0

(36)

_ L -
EMN(kx’ 2, Fn) = f dz' G(kx’ 2y Z,)JMN(kxs ZI, Fn)
0

_Es(k:w 205 Fn)

Ny Fky, z), @37

where
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L
F(ky, z) = f dz' Glky, z, 2')G*(ky, 29, 2'). (38)
0

In the spatial domain,
L oo

ENR(F’ Fn)=f dZ/ f dx, g(Fa F,)JNR(F’, Fn)’ (39)
0 —00

and

EMN(F, Fn) = f dx' K(x _JC/, Z)Es(x’, 20, Fn)y (40)

—o0

where
K(x, z)=L f " dky e — Fks, 2). (41)
27 | _,, N*(ky)
Note that
K(x, zg) = 6(x). (42)

Inside the scatterer, the currents and fields are also
related by the constitutive equation involving the
unknown Q:

J5(F, Py @) = Q(F; @)E(F, Fy; 0),
or
Q(F; w)=]s(F, Fns w)/E(fa Fn;w)> (43)

where the dependence of all quantities on the fre-
quency wis now explicit. We will assume that Q has
the following specific frequency dependence,

O(F;, w) = 8c(F) — iwde(F), 44)

where 8o(7) and 8e(7) do not depend on frequency.
Below we will also assume that measurements are
available at a finite number of frequencies, denoted
by w,, m=1,..., M.

Equations (32), (35)-(37), (43), and (44) must all
be consistent inside the scatterer. The minimum
. norm current J,y and its associated field inside the
scatterer Epyy are fixed by the data. Thus these
equations can only be made consistent by adjusting
0 and the nonradiating current Jyg. Specifically,
(43) and (44) imply that, inside the scatterer, the
electric field Enr of the nonradiating currents,
when added to E, and E,;, must give a total
electric field that divides the scattering current J; to
produce a Q that does not depend on the position of

the source 7, and depends on frequency only
through the factor iw (equation (44)). In the next
sections we will show how to incorporate these
conditions by expanding the nonradiating currents
in suitable basis functions and minimizing two cost
functions. First, we illustrate the above formulas
for the model problem of Figure 1. In this model
problem the weighting function N 2(kx) in (28) can
be evaluated explicitly. For the measurement line
z9 =0,

N*(ky) oro\ 1~ e kY, #0 45
X 2|kbz| 2k’111z s bz , (452)
2 ol 2
Neky) = L, e = 0. (45b)
2k,

The minimum norm solution can then be written
explicitly in terms of the Fourier transform of the
data,

= _ 2kbz 2k'l’zz
Junthy, 2/, F) = "““wM 1 — o2k
E,(ky, 20, Fo)e M=t k450, (462)
- 2kp, 1
JMN(kxs Z/, Fn)= -
wpg L
cE(ky, zg, Fp)e ®e? Ky =0, (46b)

The electric field of the minimum norm currents can
also be calculated explicitly in terms of the trans-
formed data,

_ 2kY, sin (kj,z")
Vo —kte
Eyntky, 2’5 Fy) = [1 eI g e
1-— e—Zkﬁz(L—z') "
+ BT e M Ey(ky, 20, Tn)y kb #0,
(47a)
_ 1 sin (kp;z') FAN
Eynle, 7 Fp) = | = e 4 [ 1 = = | iz
unky, 2'5 Fy) [L o, 7/
cEi(ky, 20, ), ky, = 0. (47b)

and

L
F(kx,z)=f dz’ Glky, z, 2')G*(ky, 29, 2'),
: 0
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2 o2 7
wpg \“| sin (kh;2)
H&0=( —
2|k kb,
1 — e 2khlL-2
e e Mg~k fy 0, (48)
bz
2 .
I3 sin (kp,2) .
F(kx’ Z) = Ko bz + (L _ z)e—‘lkbzl ,
2kbz kbz

K, = 0. (48D)

5. Basis Functions for Nonradiating
Currents

To solve for the nonradiating scattering currents,
we must first expand these currents in suitable basis
functions. This section describes basis functions
that are strictly nonradiating (i.e., generate zero
field everywhere outside their domain of support)
and are thus suitable for continuous measurements.
In reality, of course, the field can only be measured
at a finite number of locations. Appendix A de-
scribes basis functions that produce zero field only
at a finite number of points outside the scatterer and
are thus suitable for discrete measurements. We
call the basis functions for discrete measurements
“invisible.’”” While nonradiating basis functions are
less general than invisible ones (every nonradiating
source is an invisible source, but not vice versa),
they have some convenient properties and are use-
ful for studying the limit of continuous measure-
ments.

Nonradiating sources can be explicitly con-
structed using a method first proposed by Devaney
and Wolf [1973]). Let ¢(7) be a function that van-
ishes outside some domain V but is otherwise
arbitrary. Then the source distribution

1
W7 ©) = — —— [V2o(F) + k(M) 49)

lofbg

is nonradiating; that is,

f dr' g(F, 7'; o)(F'; w) =0, FEV. (50)

This property is easily proved by substituting (49)
for  into (50), integrating by parts with Green’s
theorem, and using the fact that ¢ vanishes outside
V. This proof also shows that the electric field of the
nonradiating source ¢ is just ¢, the function that

was operated on in (49). The normalization by
—iwpg in (49) is for convenience: If ¢ has the units
of electric field, then ¢ will have the units of electric
current. To yield a classical nonradiating source,
the function ¢ must have continuous first and
second partial derivatives up to the boundary of the
domain V. Then, by construction the electric field
of the source ¢ in (49) is zero and has zero normal
derivative on the boundary of the domain V:

)
¢(F) =0, and 5 =0, FeaV. (51

The restrictions on the continuity of ¢ can be
relaxed, however, if (49)—(51) are all interpreted in a
weak or distributional sense.

Now let ¢, | = 1,..., L, be a linearly
independent set of functions that vanish outside the
scatterer and generate a new set of functions ;(7;
w) by

1
W w) = - —— [V (R + k(L 1=1,..., L.
fopg
(52)

If the functions ¢; are chosen properly, then the
functions y; will also be linearly independent and
suitable for the expansion of a general nonradiating
current,

INR(F, Frs 0p) = E al(nm)()l’l(ﬁ Om)s (53)
1

where a{"™ are coefficients to be determined in
solving the inverse scattering problem. The electric
field generated by this J g is just

Eng(F, Fys @) = >, af™ (7). 549
I

Thus with the basis functions given by (52), no
further computation is needed to obtain the electric
field.

It is easy to construct sets of functions ¢; with the
properties required above. Except, however, for
simple domains such as the sphere [Gamliel et al.,
1989], it is hard to construct a set of functions iy
that are complete and can represent an arbitrary
nonradiating current. Here we give an example of
local nonradiating basis functions based on piece-
wise ‘‘cubic Bessel’’ interpolation (a variant of
cubic Hermite interpolation; see Conte and de Boor
[1980]) on a gridded rectangular domain. These
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basis functions are complete in the finite element
sense; that is, they can represent any nonradiating
source and its field in the limit as the grid spacing
h — 0. This construction for rectangular domains
can be extended to general domains with Hermite
finite elements.

Let the domain of the scatterer be covered with a
uniform rectangular grid,

Fpq = (Xp, 2¢)s Xp =Xo +ph, 24 =120+ qh,

wherep =0,...,P+1,andg=0,...,0+ 1. A
basis function ¢,,(7) is assigned to each interior
node, p =1,...,P,and g = 1,..., Q, as the
product,

¢pq(f:) = go(x —xp)go(z - zq)’ (55)

where ¢ is the piecewise cubic polynomial,

1
@(§) = oo(é) + h [e1(€+h) = o1(€§ — M), (56)

with
po(§)=0

and

otherwise,

e1(8) = é(¢lm - 1)?, —h<§<h,

?1(€) =0
The piecewise cubic polynomial ¢(§) is continuous
with continuous first derivative; its support is the
interval —2k < € <2h; o(0) = 1, ¢(—h) = ¢(h) = 0;
and its derivative ¢'(0) = 0, while ¢’(—h) = 1 and
¢'(h) = —1. Thus the function

F@O=> fipe—¢&), & =In,
I

otherwise.

is continuous with continuous first derivative; its
valie at a node ¢ is the sample value, f(¢) = f;; and
its derivative at a node is the central difference
. approximation, f'(&) = (fir1 — fi-1)/ @h).

The functions ¢,, are tensor products of piece-
wise polynomials in x and z and have properties in
two dimensions similar to those listed above. After
renumbering the nodes with a single index (e.g., [ =
(p — 1DQ + g) the resulting functions ¢,, — ¢; then
generate nonradiating basis functions through (52)
and the expansion for Jyg via (53). The coefficients
af™ are now just the values of Eyg at the nodes
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Fpq- The nonradiating basis functions generated by
the ¢,, will be discontinuous (because the ¢,, have
only continuous first derivatives). Nevertheless, the
boundary condition of (51) can still be satisfied in
the strong sense by only assigning basis functions to
interior nodes of the grid and by dropping the first
term in brackets in (56) for nodes along the lines x =
x1 and z = z; and the second term for nodes along
the lines x = xg and z = zp.

6. An Inversion Algorithm

To implement the inversion for the nonradiating
scattering currents and, ultimately, the inversion
for Q, we define two cost functions. The first cost
function enforces consistency of O, J, and E at any
given point inside the scatterer as the source posi-
tion and frequency varies. It expresses the condi-
tion that the material property Q is independent of
source position and has a simple prescribed fre-
quency dependence:

Ci(Q', @) =D, Vs(F, F3 @) — OF; @) EF, T @)

= > VslF P 0) = [Q'P) + 10w QPEF, T o),
o (57)
where
Q'(F) = 8a(F),
Q'(F) = —8&().

As before, E and J are split into their different
parts:

E(f, Fns wm)zEb(F, P wm) +EMN(F5 Fns wm)

+ ENg(F, Py @),

Jx(ﬁ Fps wm) =JMN(Fa Fuj wm) +JNR(F’ Fns wm)-

The second cost function enforces consistency in
the spatial variation of J, E, and Q inside the
scatterer for a given source position and frequency:

Calaf™™) = f dF 1,(F, 7 o)

- Q(F; wm)E(f’ Fus wm)|2
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[

- Q(F; wm)[Eb(Fa Fn; wm) +EMN(F; fn; wm)

2
. (58)

Tin (s Fus @) + 2 af"™ (7 0,n)
1

+ ) af"™ (7 )]
!

The integration above is over the domain of the
scatterer (or the unknown region). The second
equality comes from decomposing J and E into their
different parts and using the expansions (53) and
(54) for the nonradiating current Jyg and its asso-
ciated field Eyg. Minimization of the first cost
function by varying Q gives

> Re {Is(F, Fu3 0) EXF, Py 0)}
OF; w) = —

2 |E(F, a3 wm)lz

n,m

Z @ I T (F, Py @) E*(F, Py ©m)}

n,m

+iw (59)
> WEEF, Fo; 0m)?

n,m

This formula for O(F; w) uses all the data: all source
positions, receiver positions (in the computation of
the backpropagated fields), and frequencies. The
current J; and electric field E on the right-hand side
include the nonradiating part of the current distri-
bution and its associated electric field inside the
scatterer, which depend on the expansion coeffi-
cients a™™ that have not yet been fixed.

These coefficients are chosen to minimize the
second cost function. Minimization of C, by vary-
ing af™ gives the following matrix equation for
each source position 7, and frequency w,,,

> Biglom)al™ = —ci(fu; om),
q

, or
E(wm) Ay = —C(Fp; ©p). (60)

Here f?(wm) is a Hermitian matrix with elements
Big(om) = f GFLYIE; 0m) — 0% 0m) T om)]

: ['-llq(F; wm) - Q(F; wnl)¢q(F; wm)]’ (61)

d,n is a vector of the expansion coefficients a™™,
and é&(F,; w,,) is the vector with elements

Cl(Fn; wm)zf dF{JMN(Fs Fns wm)

- Q(F; wm)[Eb(Fs Fn; com) + EMN(F7 Fn; wm)]}

' [l/f;(’?’ wm) - Q*(’—'; wm)(;b’}‘(f; wm)] (62)

The matrix B(w,,) depends only on the frequen-
cies of operation w,,; thus different source positions
at the same frequency do not require much extra
computation. Also, if localized basis functions are
used, B(w,,) is sparse. Ideally, the two cost func-
tions would be minimized simultaneously by vary-
ing both @ and a{"™, but this simultaneous minimi-
zation is a nonlinear problem. The minimization by
varying Q and al("’”) sequentially suggests the fol-
lowing iterative scheme for the full nonlinear mini-
mization:

1. Approximate J (7, 7,; w,,) and E(F, 7,;; )
by

JS(F5 s wm) :JMN(’T’ Fu3 wm);
E(F’ Fs wm) =Eb(F, s wm) +EMN(F’ Frs wm)-

2. Invert for Q(F; w,,) from (59) employing all
data available. ~

3. Construct the matrix B(w,,) and the vector
&(F; w,y) from (61)-(62).

4. Invert for the coefficients al(”m) from (60).

5. Compute the total induced current J(7, 7,;
w,,) and the internal electric field E(7, 7,; w,,) and
return to step (2). The iteration is continued until
changes in the profile are less than some specified
tolerance.

The above algorithm is, in effect, an alternating
direction minimization scheme for the full cost
function,

(@, af™) = f 07 S s(F 7o o)

n,m

- Q(F; wm)E(F’ Fn; wm)]za (63)
CQ, al™ => | dF U, 3 @)
— QF; 0 ) E(F, T3 @m)|? (64)
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Figure 2. Geometry and model for the first example.

Minimization of the first cost function C{(Q’, Q") by
varying Q is a pointwise minimization of the inte-
grand (in (63)) of this full cost function, whereas
minimization of the second cost function C,(a/"™)

true profile

Y TTITS

>

by varying a*™ is a pointwise minimization of the
summand (in (64) when the order of integration and
summation are interchanged). This scheme is stable
because the value of the cost function C(Q, a l(”’") )is
never increased by either minimization step. Fi-
nally, Appendix C shows how to modify the cost
function C; so that the reconstructed conductivity
and electric susceptibility are positive functions.

7. Results

Figure 2 shows the first model problem on which
we tested the inversion algorithm described above.
The scatterer (the dotted region) is a 2-D square
cylinder of dimensions A X A, where A is the
wavelength of the background medium (experi-
ments were simulated at a single frequency). The
background has a relative permittivity of 10 and a
loss tangent (defined as o/weg) of 10. The relative
permittivity of the scatterer is 50, and the loss
tangent is 50 (a contrast in material properties of
1:5). Synthetic data for an electric line source

1st step 1 O;ir:]::ep

]
(CHRTTTTHTH Y

Figure 3. Reconstructed permittivity and conductivity maps. Contrast = 1:5, number of grid

points = 7 X 7.
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excitation of the medium were generated by the
method of moments. The data are the y component
of the electric field at five positions equally spaced
out to a distance A from the transmitter. The trans-
mitter-receiver array is moved over a distance 4A,
centered about the scatterer, in 40 steps.

The hatched region in Figure 2 is the unknown
region where the material properties were allowed
to vary in the inversion. This region is divided into
a grid of 7 X 7 points. The unknowns are the
permittivity and conductivity (expressed as the loss
tangent). The inversion uses invisible basis func-
tions constructed from sinc functions [Tracy and
Johnson, 1983; Johnson et al., 1984; Cavicchi et al.,
1988] according to the algorithm described in sec-
tion 2 of Appendix A. Except for numerical error,
the data were noise-free.

Figure 3 shows the reconstruction after the ze-
roth, first, and last (tenth) iteration of the algorithm.
The smooth reconstruction at the zeroth step comes
from the minimum norm inversion for the scattering
currents. The reconstruction after the first step
already reasonably defines the scatterer. Further
iterations sharpen the picture somewhat; the final
result is a spatially filtered version of the actual
model. This filtering is characteristic of any inverse
scattering problem that operates at a single fre-
quency.

Figure 4 shows a second model problem which
consists of a 2-D square cylinder of dimensions
1.5\ X 1.5A. Both the permittivity and conductivity
vary smoothly inside the scatterer starting from the
background values at the edges of the cylinder and
varying sinusoidally in the interior. The background
medium is lossless and has a relative permittivity of
5. The maximum relative permittivity of the scat-
terer is 50 (a maximum contrast of 1:10) and a
maximum loss tangent of 50. As in the first exam-
ple, the data are generated synthetically for an
electric line source and are noise-free. The data are
the y component of the electric field at five positions
equally spaced out to a distance A from the trans-
- mitter. The transmitter-receiver array is moved
over a distance 2.5\, centered about the scatterer,
in 20 steps. In this example we assume that the
boundaries of the scatterer are known, and the
objective is to reconstruct the permittivity and
conductivity variations inside the scatterer. The
scatterer is divided into a grid of 5 X 5 points. The
nonradiating currents are expanded using the invis-
ible basis functions constructed from sinc functions

. e
A x-axis z-axis

20
station
stops

25

Imaged Object

I X le————— 15—

measurement
plane

Figure 4. Schematic of the inversion problem for the
second example.

according to the algorithm described in section 1 of
Appendix A. Figure 5 shows the reconstructions at
the first three iterations and the last (sixth) where
the rms error in the inverted permittivity and con-
ductivity is less than 1%.

8. Conclusions

The STIE method described here casts the non-
linear inverse scattering problem as the solution of
a coupled set of linear equations. The method is
iterative but does not proceed by matching the data
better at successive steps. Instead, the data is
matched at the initial step through the solution of an
inverse source problem for the minimum norm or
radiating part of the scattering currents. The itera-
tive part of the algorithm then seeks an electric field
and material properties inside the scatterer that are
consistent with the incident electric field and the
field of the minimum norm scattering currents. The
iterations proceed by sequentially adjusting the
material properties and the nonradiating scattering
currents. A key part of the algorithm is the use of
explicit nonradiating (or invisible) basis functions.

Several issues still need to be addressed with the
STIE method. First is the sensitivity of the method
to noise in the data and to the number of unknowns
that are used in the solutions for both the minimum
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Figure 5. Reconstructed permittivity and conductivity maps. Contrast = 1:10, number of grid

points = 5 X 5.

norm and nonradiating currents. Next is the suffi-
ciency of the constraints that are imposed on the
nonradiating sources to provide a unique recon-
struction. Finally, there is need for an estimate of
the rate of convergence of this method.

Appendix A: Discrete Measurements

The methods described in the text apply to ideal-
ized continuous measurements and require two
modifications for discrete measurements: first, in
the construction of the minimum norm currents,
and second, in the construction of the nonradiating
basis functions. The first modification is a standard
application of Backus-Gilbert theory [Aki and Rich-
ards, 1980]. The second modification involves the
notion of invisible sources, which are sources that
generate zero field only at a finite set of points
outside the scatterer. The first part of this appendix
describes these modifications. The second part de-
scribes an alternative fully discrete method that
deals directly with the electric field, instead of the
currents, inside the scatterer.

Al. Expansions of the Currents

Assume that measurements are only available at
a finite set of points, 7, = x X + 202, k=1, ..., K.
Clearly, the operations described in section 3 (in-
volving Fourier transforms, etc.) cannot be done
directly on these data. To construct a discrete
version, we start with the equations,

Es(Fk,Fn)=J df,g(i'-k,F,)Js(f,:Fn)a k=1,..., K.
Vv
(65)

A minimum norm solution of these equations can be
obtained by expanding J, in the discrete set of basis
functions given by the conjugate of the kernels g(7;,
)

Tun(F's Fa) = O, cig*(Fj, 7). (66)
J

Substituting into (65) gives a matrix equation for the
coefficients c;,
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K
2 C“-?’kjcj =Es(Fk: Fn)’ (67)
j=1
where
Gy = f dr' g(Fe, F')g*(F;, F'). (68)
1%
Thus if the matrix 4 is invertible,
(69

¢j =, G'Es(Fy, F),
k

and (66) gives the minimum norm currents. If 9 is
not invertible, its generalized inverse can be used.
The correspondence between this discrete version
and the continuous version in the text is straight-
forward.

We now construct current basis functions that
will give zero field at the measurement locations, 7,
k=1,..., K. We first choose a set of M radiating
basis functions with M > K. Let L = M — K, and
split these basis functions into two sets:

J}}l)(f),j:l,._.’K; JI(Z)(’-‘j’ l=1""’L‘

Let ¢ be the electric field generated by each basis
function,

58 0 = [ ar o L)

where the dependence of ¢ on frequency w comes
from the Green function. Next, form the K X K and
K x L matrices ®P(w) and ®®(w), whose ele-
ments are

O (w) = §(Fi; w) = f dr' g(Fe, P, (70

k=1,...,K, j=1,...,K,

®P(w) = $PF; ©) = f dF’ g7, YOO, (71)

k=1,..., K, I=1,..., L.

The kjth element of the matrix @D s just the
electric field at the kth receiver location that is
generated by the jth basis function in the first set of
basis functions. A similar interpretation holds for
the elements ®{P.
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If the basis functions are chosen properly (radi-
ating), the K X K matrix ®D(w) will have an
inverse, which we denote by ® ~D(w). Define new
basis functions, ¢, [ = 1, ..., L, as the following
linear combination of the original basis functions:

0 0) =320 - > > §P; V@R (@), (72)
j k

J

It is easy to show that these new basis functions
give zero electric field at the receiver locations 7.

The L = M — N invisible basis functions con-
structed in this way can replace the nonradiating
basis functions in the expansion,

JNR(ﬁ Fns wm) = 2 al(nm)ll’l(i:; wm)-
l

(73)

As in the text, the unknown coefficients al(”’”) are
determined by minimizing the cost function Cj,.
Each of the new basis functions generates an (non-
zero) electric field ¢; inside the scatterer,

O (F; wp) = J dr' g(F, 7Y (F'5 @pm); a4

thus

ENg(Fy Pus @) = O, af"™ (7 @) (75)
I

A2. Expansions of the Internal Electric Field

We now describe a fully discrete version of the
STIE method that uses expansions of the electric
field, instead of the current, inside the scatterer.
This approach is useful for dealing with discontin-
uous material properties, because a finite set of
smooth basis functions will represent the electric
field, which is continuous in the TE polarization,
more accurately than the current, which is discon-
tinuous. The expansion can still preserve the dis-
tinction between the radiating and nonradiating
parts of the field.

Let the total electric field inside the scatterer be
given by

E(F, Fu; @) = >, c/™ (), (76)

i

where the J; are the basis functions and e are

the expansion coefficients. As before, the super-
script (nm) indicates dependence on source position
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7, and frequency w,,. The scattering current gener-
ated by this electric field is

Ts(F, Fys @) = QF; @p) O, ¢™Fy(F);  (T7)

in turn, the scattered field generated by this current
is
Ey(F, T3 o) = 2, ¢f"™Ei( wp). (78)

i

where

(s o) = f dF' gF, IO wm)FiF).  (19)

In a forward problem, enforcing consistency of
the two expansions, (76) and (77) (plus the incident
field E,), inside the scatterer leads to the standard
method-of-moments solution for the coefficients
c,-(’"”). In the inverse problem, however, we require
the expansion to be consistent with the measured
electric field outside the scatterer (the data), and we
also wish to maintain the distinction between the
radiating and nonradiating parts of the internal field.
As in the previous section, we thus select M basis
functions, where M > K (K is the number of
receiver locations at a given source location and
frequency), and we split these basis functions into
two sets such that

K

L
EF, 7y om) = 2, 50O + 3 §0af™,

=1

(80)
i=1

where L = M — N. The functions ¢; also naturally
split into two sets according to (79). The goal now is
to eliminate the first set of coefficients b; (m) in (80)
by matching the data; this will leave the second set
of coefficients a™™ free to represent the nonradi-
ating part of the field inside the scatterer.

Define the matrices,

o) = 30 ©), k=1,...,K, j=1,..., K,
®1)
oPw) = 3PF; w), k=1,...,K, I=1,...,L,

(82)

whose elements are the scattered electric fields at
the measurement locations generated by the basis
functions in each set. We can then write for the
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scattered electric field at the measurement loca-
tions,

> oP(@b™ + > o (w)a"™ = E i, Fu; 0m).
j !

(83)
If the basis functions are chosen properly, the
matrix ®(w) will have an inverse, so that bj(”’")
can be eliminated from this equation,

b(nm)—zq) ()(w)E(rk: rn,wm)_zq) )((1) fm) .

!

(84)

Substituting back into the original expansion for E
gives

E(l’, Frs wm

2 2 A0 V(@) Ey(Fr, Frs @)

(nm)

+ 2|00 - 2 2 37025 @)@ () |af
! J ok

(85)
The first term on the right-hand side of (85) is an
electric field inside the scatterer that, when multi-
plied by Q and propagated by the Green function,
exactly reproduces the measurements. The first
term thus corresponds to Ejsn, the minimum norm
or radiating part of the electric field (with respect to
the chosen basis functions),

Exn(F, P 0m) = D, >, #0005 V(0) EgFis Py 0m)-
ik

(86)
The second term on the right-hand side of (85) is an
electric field inside the scatterer that radiates zero
field at the measurement locations. The quantity in
brackets in this term defines new basis functions for
the invisible part of the field,

Wi(F ) = T — 2 2 A2 V(0)2P ().
87)

These basis functions are similar to the invisible
basis functions described in the previous section,
but their definition (and computation) involves the
material property Q through (79). Finally, to obtain
an iterative process for choosing the free coeffi-
cients af"™, let ¢; and E;;y be the electric field
generated by ¢; and E,y inside the scatterer by the
action of the Green function; that is,
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d’l(F; wm) EJ- dr’ g(F» FI)Q(FI; wm)‘l’l(F'; wm)’ (88)
and
EMN(F: Frs wm)
EJ. df, g(F, F,)Q(F,; wm)EMN(F', Fn; wm)' (89)
The cost function of (58) now becomes
Calaf™) = f AP Vo7, Fos o)
— O(F; @) E(F, Fr3 @)
- f 47 \OF; @m)?| Ev(F, 7 o)
+ 2 a7 o)
1
- Eb(F; Fn; wm) +E~MN(77 Fn; wm)
2
+ 2 af™éi(F wn) || - ©0)
!

Minimization of this cost function leads to a
matrix equation for the coefficients a l(’"") , similar to
(59). The cost function C; remains the same. Thus
the iterative minimization outlined in the text can
proceed by expansions of the electric field instead
of the scattering current. A disadvantage of this
approach is that the functions ¢, and ¢; now depend
on the material properties Q and must be updated
during the iterations.

Appendix B: Minimum-Norm Scattering
Currents and the Resolution Kernel

The minimum norm solution for the scattering
currents, derived in section 3, is

Es(kxa 20 Fn)

G*(ky, 20, 2').
N (kx, 20, 2')

Tun(ky, 2/, Fy) =
The scattering currents given by the minimum norm
solution always lie in the space spanned by G*(k,,
zg, 2'); the projections along this basis are deter-
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mined by the scattered field E(k,, z,, 7,) at differ-
ent transmitter locations 7.

To derive the relationship between the minimum
norm solution and the actual induced currents,
substitute (19) into (27) and express both Jyy(k,,
7', 7,) and J,(k,, z', 7,) in the spatial domain:

'L ]
Jun(F, 7) =j dz'f dx’
0 —00

*R(x—x', z, V(X' 25 Fy). 1)

Here R(x — x', z, Z') is the resolution kernel of the
inversion operator that gives the minimum norm
current in terms of the actual scattering current (the
resolution kernel is also called the point spread
function) and is given by

1
N(ky)

1 ® s ' 4
%(xr __xu’ Z', Z") =2_f dkx elkx(x —x")
T

—c0

» GHky, 29, 2')Glky, 20, 27,

2 o
== J dky cos {ky(x' — x")}
™ Jo

Kbz

e —kb (2’ + ), ~ikb: (2’ —z")_
1—e %

02)

The resolution kernel R(x — x', z, z') has the
following properties:

1. Its support, in general, is the entire x — z
space and not just the domain of the scatterer.

2. Itis a convolutional operator in the direction
parallel to the measurement plane; that is, along the
X axis.

3. It is symmetric in the plane parallel to the
measurement plane:

Rx—x',2,2")=R(x' —x, 2, 7).
4. Itis a self-adjoint operator:
R(x—x',2,2)=R*x' —x, 7, 2).
5. The function g(x, zg, 7') is an eigenfunction
of R(x" — x", Z’, Z") with a unity eigenvalue:

L o
f dz' f dx' R(x' —x", z', 2)g(x, 2o, F')
1] —00

=g(x, 205 r—”)'
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1.0 IV Y = 7. The nonradiating source J yg(F, 7,,) belongs to
0sl® =511f£b/f§0=1 i\ the annihilator of the resolution kernel:
. - [}
H L
] 1 , o
0.6 'I \‘Z/l'b=z 1y =2.5 f dz’ f dx’ R(x—x', z, Z')Ing(F', ) = 0.
0.4 i 0 -
]
0.2 Ii \‘ 8. At zero frequency the resolution kernel is
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Figure A1l. The induced current’s resolution kernel as a
function of distance along the x axis parallel to the
. measurement plane. (a) Varying observation point. (b)
Varying slab thickness. (c) Varying background medium.

0.0 T e I M L] v 1 M ¥ M | v
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6. R(x—x', 7, 7') satisfies the following equal-

ity: z/ Ay

' Figure A2, The induced current’s resolution kernel as a
L function of distance along the z axis perpendicular to the

J- d7’ R(x—x', 2/, 2') = 6(x — x'). measurement plane, (a) Varying conductivity of back-

0 ground medium. (b) Varying slab thickness.
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(z+ 7 +2nL)%— (x — x")?

2 [++]
o ZO [z+z +28L)2+ (x —x)??

R(x—x',2,2) =

Equation (91) expresses the minimum norm solu-
tion as a weighted average or filtered version of the
actual induced current. The filter is the resolution
kernel. A perfect resolution kernel is a delta func-
tion in space; resulting in a minimum norm solution
that is equal to the actual induced current. In many
practical cases the minimum norm solution will be a
smoothed or (spatially) low-passed filtered version
of the actual induced currents.

Figure A1l shows the resolution kernel for the slab
problem along the x axis parallel to the measure-
ment plane. Figure A2 shows the resolution kernel
along the z axis perpendicular to the measurement
plane. The value of the kernel is normalized such
that its maximum is unity. All dimensions are
normalized with respect to the wavelength of the
background medium.

Figure Ala shows that the resolution parallel to
the plane of measurement degrades as we move
away from the plane. Figure Alb shows that the
resolution is independent on the thickness of the
slab; however, for thicker slabs, contributions
from points adjacent to the source point (x = x')
become larger. as manifested in the appearance
of side lobes. Figure Alc shows that the resolu-
tion parallel to the measurement plane is deter-
mined by the wavelength in the background
medium, since the width of the curves are weakly
dependent on the background’s electrical parame-
ters. As the medium becomes lossless, contribu-
tions from points adjacent to the source points
become larger.

Figure A2a shows that the resolution perpendic-
ular to the measurement plane is poorer than that
parallel to the plane. It also shows that the resolu-
tion is lost as the medium becomes lossy. Figure
A2b shows that as the slab thickness increases, the
resolution degrades and is eventually lost for an
infinite slab.

Appendix C: Positivity Constraints on the
Reconstructed Electrical Susceptibility
and Conductivity Structures

Positivity can be imposed on the reconstructed
susceptibility y(7F) = &(F)/ey — 1 and conductivity
o(F) by first recasting the constitutive relationship
of (43) as follows [Kohn and McKenney, 1990]:
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js(F, Fns w)

o(F) — iwegx(F) = ——————

(%) ox (%) EG 7r @)

u(F, Fys @) — W(F, iy o)
IE(F’ Frj (D)l

, ©3)

where
Js(F, s @) = J4(F, Fp; )
+ oy —iw(ey — £9)]EF, 7y w),
u(F, 7p; ) =Re {5 (F, s 0) EXF, Fy; o)YE(F, Fy; o)),
o(F, 3 @) = —Im {;(F, 3 0)E*(F, F; @)Y|EF, Fy; ).

Next, the cost function of (57) is split into two
functions,

Ci(o) =, Uo (P} V2u(F, 7y @)

n,m

| - {U(F)}llzlE(F’ Fus wm)l]z,

(94)
CiG) =D, W@meo) " Hx P} 2o(F, 7y 0m)
— (@meo) P (PEF, Fy; @)[1% (95)

The differences between these new cost functions
and the previous one (equation (57)) vanish at the
true value of Q(F; w). The new cost functions are
measures of the dissipated and stored powers, re-
spectively. The values of o(F) and () that mini-
mize these cost functions are

12 -1/2
o(F) = (2 {u(F, Py wm)}z) (2 E(F, Fo; @) 2) ,
n,m n,m (96)
1 1 1/2
X(f) = ;; (% ;;{U(F, Fn; wm)}2>
E(F, Fy3 @) o7

-(2 on

n,m

-12
2)

Hence
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S (u(F, Fuy 0n)}?\ 2

nm
OF; w) = 3 —ap

DU EF, Fos @)
n,m

> lF, Fuy 0oy 2

n,m (98)

—1i +eg— €y |.
@ Z @ |EF, Fry 0)]2 0 "h
h,m
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