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Abstract

A structural operator approach to the up/down decomposition of elastic waves in inhomogeneous and anisotropic media
is presented. First, the up/down decomposition is carried out; next, a decomposition of the wave field into its polarization
constituents is worked out. The procedure is discussed in detail for the class of orthorhombic media and includes lateral
variations. The high-frequency approximation to the operator approach is shown to be amenable to matrix manipulations
in the horizontal Fourier transform domain. Two-level parabolic approximations are carried out to find sparse matrix
(finite-difference) representations of the relevant operators. Finally, the space-time peculiarities and artifacts associated
with the parabolic approximation to the particle velocity of the wave motion generated by a point force in a homogeneous
and isotropic solid are discussed.

1. Introduction

For the next few years, research in seismic prospecting methods is expected to concentrate on the feasibility
of: (a) three-dimensional, three-component data acquisition and processing, (b) incorporation of anisotropy
in the analysis, (c) incorporation of lateral variations in the subsurface configuration.

From a mathematical point of view, the problem of reconstructing the subsurface structure of the earth is
an inverse scattering problem. Due to the enormous amount of data involved, the degree of complexity of the
problem, and the amount of detail with which the local constituency of, for example, a reservoir is needed, the
application of the basic procedures of inverse scattering as they could, for example, be based on reciprocity
[1], is out of the question, even with present-day computational facilities. Therefore, approximations, possibly
adjusted to a particular feature one is interested in, are a necessity. As a matter of fact, both the forward
modeling and the inversion procedures have to be carried out computationally. In this respect it would be
advantageous if, at least partially, the presently available software, including the established approximations
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to, for example, wave extrapolation operators such as the parabolic approximation [2], could also be used
under the more complicated circumstances. With this perspective in mind, the present study, which is focused
on the forward modeling, has been set up.

A large class of wave equation based seismic migration/inversion schemes in use (see, e.g., Ref. [3]) is
based on the decomposition into up- and downgoing waves. With this in mind, we have developed an operator
formalism for the up/down decomposition of elastic waves in fully inhomogeneous, anisotropic elastic solids,
where up/down is defined with respect to a given direction of preference. In practice, the latter direction
is to be chosen in the direction of most rapid variation of the medium parameters (‘depth’ direction, but
this may be inclined with respect to the vertical direction), while in the plane perpendicular to this (‘lateral’
plane) the variations in the medium parameters are assumed to be less rapid. It is argued that this up/down
decomposition be carried out prior to a decomposition into polarization states (like P-, SV- and SH-waves
in a configuration consisting of mutually parallel, homogeneous, isotropic layers). The interaction between
up- and downgoing waves due to inhomogeneities is then described by a kind of reflectivity operator as in
the Bremmer coupling series [4]. The terms in this Bremmer coupling series separates ‘up’ and ‘down’ only,
and hence not ‘left’” and ‘right’ (in the lateral sense). A full separation is only achieved in the high frequency
approximation; then the coupling in the sense of the Bremmer series is accounted for by the generalized Born
method [5].

A full elastic wave up/down decomposition scheme is set up for arbitrarily inhomogeneous media that
are anisotropic with up/down symmetry, in particular with orthorhombic symmetry; the planes of symmetry
are assumed to be fixed. For a number of mathematical details, such as the existence proofs for, and the
construction of, the pertaining pseudo-differential operators, the reader is referred to Ref. [4]. In the present
paper, the attention is focused on the main line of thought.

To detect the presence of anisotropy it is advantageous to extract the signals corresponding to particular
polarization states. Therefore, after the decomposition into up- and downgoing waves has been carried out,
the operator formalism for the decomposition into polarization states is worked out. In the general case, this
decomposition involves the symbol calculus of pseudo-differential operators. The leading term in the high-
frequency approximation can, however, be determined analytically with the use of spatial Fourier components
in the lateral directions. This term is also the lowest-order term in the expansion of the full symbols in the
lateral variations in the medium properties.

Next, we investigate what are the consequences of the parabolic approximation to the wave operators in
the preferred direction. This approximation leads to artifacts, which can be misinterpreted if proper care is
not taken (see Ref. [6,7] for the analysis of artifacts in the acoustic case). To have at least an indication of
what can be expected in the full elastic case, the simple problem of finding the exact space~time wave motion
generated by a point force in an unbounded homogeneous, isotropic solid has been studied. For this case, the
parabolic approximation is carried out completely along the lines of the earlier developed operator formalism
pertifient to the general, laterally varying media. The analysis shows that the corresponding consistent parabolic
approximation is not at all trivial and that the results differ from those that would be obtained by applying the
parabolic approximation to the standard P- and S-wave Lamé potentials in isotropic solids. This difference is
due to the fact that in our analysis the decomposition into up- and downgoing waves is carried out prior to a
decomposition into polarization states (P- and S-waves), whereas in the analysis based on the Lamé potentials
a decomposition into polarization states (P- and S-waves) is carried out prior to a decomposition into up- and
downgoing waves (with a subsequent parabolic approximation to the ‘wave extrapolation’ operator). In our
opinion, our analysis seems to be more fundamental and appropriate for the more complicated phenomena in
arbitrarily inhomogeneous and anisotropic media. The occurrence of artifacts and their degree of seriousness
are illustrated. To this end, the exact space-time equivalent to the parabolic approximation to this simple
problem has been determined with the aid of the modified Cagniard method [8,9], and the two radiation
patterns are mutually compared.

As regards the parabolic approximation carried out on the extrapclation operator, a wealth of literature
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exists. The most pertinent papers are briefly discussed below. One approach to the parabolic approximation
is to transform the relevant wave equations to a moving frame of reference and subsequently separate the
slow from the rapid variations. For an almost homogeneous, isotropic solid, Hudson [10,11] derived two
simultaneous parabolic theories, one for constituents close to the P waves and one for constituents close to the
S waves. An extension of his work can be found in Ref. [12]. A formulation based on the divergence and curl
of the particle velocity or displacement fields (which also results in a separation into P and S waves) has been
developed by Landers and Claerbout [13]. In their work the coupling between the (perturbed) constituents is
assumed to be small. A formulation developed by McCoy [14] does account for this coupling. The differences
between the three approaches have been discussed by Wales and McCoy [15] and Wales [16].

Our formmlation is developed for anisotropic media (with orthorhombic symmetry) in which three modes
of propagation exist. The planes of mirror symmetry are the candidates for the ‘lateral’ directions. A consistent
scheme for parabolic approximations is presented. With it, the three branches of the vertical slowness matrix
that has resulted from the prior up/down decomposition are approximated. In this respect it is observed that
the order of the parabolic approximation and the order of the singularity of the slowness surface should be
compatible. The procedure builds on the work of McCoy [14] and Wapenaar and Berkhout [17], and involves
a rearrangement of the ‘wave splitting’ procedure employed by Corones et al. [18] (see also, Ref. [19]).
Resulis are shown for the cases of a hexagonal solid (solid with TIV symmetry) and an isotropic solid.

In the amzlysis of acoustic wavegunides (as they occur in ocean acoustics), one-way equations can be used
io calculate the relevant modal constituents [20,21]. In this case, the preferred direction of propagation is
parallel to the interfaces rather than perpendicular to them. This also applies to channel waves occurring, for
example, in low wave-speed layers in cross-well experirnents.

2, The elastodynamic wave-matriz formalism

We consider linearized elastic waves in an orthorhombic solid occupying some subdomain of three-
dimensional space R*. The point at which the wave motion is observed is specified by the coordinates
{x1,2, %3} in a Cartesian reference frame with the origin O and three mutually perpendicular base vectors
{#1, 45,43} each of unit length. In the indicated order, the base vectors form a right-handed system. In accor-
dance with geophysical convention, x; is taken as the vertical, or depth, coordinate (which increases in the
downward direction) leaving xi, x, as the horizontal coordinates, The subscript notation for Cartesian vectors
and tensors is employed, and the summation convention applies. Lowercase Greek subscripts are used to
indicate the horizontal componenis of a vector or a tensor in three dimensions. The time coordinate is denoted
by ¢. Differentiation with respect to x,, is denoted by 8.; 9; represents differentiation with respect to ¢. The
coordinate planes (with as their normals 1, i,,73) are assumed to be the fixed planes of mirror symmetry in
the anisotropy throughout the medium, irrespective of its inhomogeneities.

2.1, The basic equations in the complex-frequency domain

. The linearized elastic wave moticn in a continuously varying, orthorhombic (fixed axes of symmetry)
perfectly elastic solid is characterized by the hyperbolic system of first-order differential equations

“‘Akmpg‘ﬁmqu + PBz’Uk = ﬁc: (1)
“Siquﬁt’qu + ﬁijmram'vr = hij, (2)

where

1
Ajjpg = E{Jipéjq + Sigdjp), (3)
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and 1,, = stress, v, = particle velocity, p = volume density of mass, s;j,, = compliance, f; = volume source
density of force, Aj; = h;j = volume source density of deformation rate, d;; = Kronecker tensor. It is assumed
that s;j,; and p are time independent. Through the standard Voigt (cf. Refs. [22,23]) compression of indices:
11 —1,22—2,33—3,23,32 -4, 13,31 - 5 and 12,21 — 6, s;;54 is represented by the 6 x 6 compliance
matrix sm». (In this process, the elements with the compressed indices 4, 5, 6 are weighted with a factor of 2,
€.8., S¢s = 4s1212.) The compliance mairix is simply the inverse of the stiffness matrix ¢u,. For the assumed
symmetry, the non-vanishing elemenis of the stiffness matrix are cyi, €12, €13, €23, C22, €33, Cad, Cs5, Cg5. Assuming
that the sources that generate the wave field are switched on at the instant ¢ = 0, causality implies that the
wave field quantities satisfy the initial conditions

Tpg(Xm,t) =0 fort <0,
Ur(Xm, 1) =0 fori<0. (4)

In view of the time invariance of the medium, the causality of the wave motion can be taken inio account
by carrying out a one-sided Laplace transformation with respect to time, taking the time Laplace-transform
parameter §, which in general is complex-valued, to be in the right half Re{s} > 0 of the complex s-plane and
requiring that the transform-domain wave quantities be bounded functions of position in all space. To show
the notation, we give the expression for the particle velocity

Vp(Xm, §) = /v,(xm,t)exp(—sz)dt, (5)
=0

2.2. Scaling of the vertical stress

A decomposition of the elastic equations (1) and (2), and of the stress, into their horizontal and vertical
components is carried out. In the equations for the vertical siresses, a scaling is applied. Let the local medium
slownesses along the vertical direction be c;l = (p/c33)1/2, c;l = (p/c44)1/2 and cs“1 = (p/cs5)1/2, and let us
arrange them in the diagonal matrix

L0 o
Cs
c=|1o0o L ol. (6)
C4I
0 60 —
C3

For constructing the one-way wave operator in inhomogeneous media, the traction needs to be normalized
with an elastic wave admittance mairix Y, i.c., the traction needs 1o get the dimension of particle velocity,
according to

Ty = Yo Tn3, Y =Clp, (7)
2.3. The reduced equations
Let
Dy= 18, pe{l2), (®)

represent the horizontal slowness operators. Expressing the horizontal stresses in terms of 9 and 7;, and
eliminating them from Egs. (1) and (2), we obtain the scaled reduced hyperbolic system of differential
equations
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. . n .
&0 = —5TiUr + SChrTiz + NE,

6B + Yip (B3 Y1) 1 23 = —5Si0r + 8 Uin i3 + NF

in which
0 0 -D
= 0 0 -D
! _np _mp g
C33 €33
and
0 0 ~&op (9
Css C3
U= 0 0 _Lp, [ ,
C44 C3
6 oss —C—3D2 Ca4 0
€33 Cs C33 ¢y
while
Lo o
Cs {
S=1]120 = 0
4
\o o 1L
[ “ Cs
E—js-[Dl(duDI.) + Da(essD2)] = [Di(diaD2.) + DalessDi )] 0
- CCT: [D2(d21 Dy .) + Di(cesD2.) ] c% [Dy(d22Dy.) + Di(cesDy.)]1 O |-
0 0 0
where

Ci3C3j ..
dif = Cij — 1733‘1" LA S {132}

Note that d;; = dj;. The notional source distributions follow as

22113
VU — 2h
a By + ), +h
oy Tt o P

for the particle-velocity part, and

» /i Dy [duhy + dizho] + Da[2¢s6ha]
N =Y [| 2] — | Daldarthun + daahaa] + Di[2¢s6h12]
/3 0

_ for the vertical-stress part.

2.4. Wave field partitioning

61

(9)
(10)

(11)

(12)

(13)

(14)

(15)

(16)

Using the up/down symmetry of the medium, we arrive at a convenient operator formalism by arranging

the wave field quantities in the two field submatrices

- at )
'U[ '—‘T13
F, = (%) s F, = _,5123 .
~r ~
_133 U3

(17)
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The total field matrix is denoted by F;. Here, uppercase Latin subscripts will range through the values 1,2. In
this notation, it is found that Egs. (9) and (10) combine to

(BT + E)p ¥y + A ¥, = Ny, (18)
where
0 0
0 (Y (B,Y™ 1)) 0 0
5 3 33 (19)
0 0 (Y (Y ") 0
0 0 0 (Y (Y ))2
\0 o s . 0
is diagonal, and in which the elastodynamic system’s matrix operator is partitioned into
. (0 A
A= <A2,1 ; > (20)
with
) Cun 0 Tia ) Su S Us
Ap=1 0 Cpn T, A= Su S Uxn|, (21)
Uy Us, S3 T3y T Cs

and has zero block matrices on the main diagonal. The form of Eq. (20) is maintained when going to
monoclynic media, as long as the mirror plane of symmetry has its normal along the preferred (vertical)
direction of propagation. The notional sources are correspondingly grouped together in ’

W L
Ni=| M|, R=(H | (22)
N; N3

For alternative matrix representations and their symmetry properties the reader is referred to Ref. [24].

3. Decomposition into up- and downgoing waves

Via an appropriate linear transformation to be carried out on the field matrix, a wave-matrix formalism
will be arrived at from which, at each depth level, a decomposition into up- and downgoing waves (with
respect to the xs-direction) will be manifest. The technique we develop here, is just a generalization of the
diagonalization of a 2 x 2-matrix, with the extra complication that the elements of the matrix do not commute.

3.1. The characteristic equations

To achieve the decomposition we write
Fr = fJI,JWJ, ‘ (23)

where W is the wave matrix containing the up/down wave amplitudes. Via an appropriate choiée of the
composition operator L; s, Eq. (23) transforms Eq. (18) into

L1y (85Wy + sAyuWar) = —(85Lr7) Wy — Bp s La War + Ny, (24)
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as to make Ay, satisfying
AI,JiJ,M = I:JI,JAJ,M, (25)

a block-diagonal matrix of operators. We arrange the 3 x 3-matrix elements of the composition matrix I,
into columns (generalized eigenvectors) and write

L}H =1, i:}_) =14,. (26)
Let the diagonal matrix elements of Aj be written as
A =TW, Ay =T, (27)

then Eq. (25) decomposes into the two systems of equations

AI’JI:J_(]+) - i}“f‘”’, (28)
AI,JL‘(]_) = ]:}—)f‘(_). (29)
Through mutual elimination, Egs. (28) and (29) lead to decoupled equations for I]fi) and iéi):
AI,ZAZ,IIA-'ii) - ]“—_‘fi)f(:l:) f‘(:l:)’ (30)
AguA L) = LEPE P, (31)

We call these equations the characteristic equations.
In our further analysis we need fractional and negative powers of the matrix operators A = A;;A;, and
A1,. Using Eq. (21), we obtain

1 o 1 _ i3 oss 1
-2 o(aa()) 2 20(3)) -ofonle )
A=| % ip(dup (L)) =D, (2D, (S D[ cesDs (L.
044[ 2( 12 1(05 ) o 1 e + Dy | ce6L)2 o
() reon ()]
5 Cs
Cs 1 C13 Ca4 1
—= Dy dpDy| —. - D/l —=D,| =, D Dy —.
2 [ou(aamn(z)) -2 (o () + 2o ()
. - D, E2—31)2 % + Dy cg¢Dy l (32)
€33 C4 C4
_Lip, (¢ 4 cnp, (L
o |22\ 5 uD2(
-2 [C—S;DI + Dy (9-‘22 ) - D, (dqu ) 2D, (c“Dle ) - D, (d12D§ )]
55 | C2 c2
(%)

C. C. C
__.éi |:-£:—24- Dz CLZ - D2 (duD% ) - 2D1 ((,‘56D2D1 ) - D2 (dZZD% )}
4 3
1 €13 2 , €232
- + —Di + =D
2o N ey

To prove that this operator is elliptic, we let it act on the Fourier constituent exp(—isaux,), where iay
represent the horizontal components of the slowness vector, and thus obtain the symbol matrix a =
a(xy,iow, c5' ¢t et x3) of A as
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A exp(—isauxy) = @ exp(—isouxy). (33)
Note that iay is the symbol of D,. The symbol matrix allows for a polyhomogeneous expansion of the type

a = a, + a + ao, (34)
where a5, a, and g, are defined through

Ay j (xu, siaw, s¢7t, sc7t s¢5hx3) = 77 Gp oy dan, 5 e xs),  J=0,1,2, (35)

Thus a, is of the third, a, is of the second, and @ is of the zeroth degree in ic,. The so-called principal
symbol, a,, follows directly from Eq. (32) as

1 dll C13 2 Co6 2 Cs 1 C44

.__2. + —_— al + — Q) —_ d12—013‘—‘ +cﬁ6 431
c

cs 33

Css €33 Css C4 Cs5
s _ el Css 1 dyn ¢\ 2, C6 2
= ——{dp—c3—=+c6 | S+ |-zt o
C5 C44 C33 o C44 C33 Caq
ci3 + Css5 ) (—iap) €23 + Caq \ (—ia2)
C33 Cs €33 C4
. c 1 du 2¢e6 + d
—icsar | {1 + a3 - + ._a% o+ _“—iza%
€33 ) ¢ Css Css
, c 1 2066 + d d.
—icsan | [ 1 + Q3 - + i__l_Za% + ﬁa% (36)
€33 ) ¢4 Ca4 Caq

1. ¢33 2 3 2
- — ——a] — —ao).
3 €33 €33

At this point it is observed that the operator A, associated with &, is the high-frequency approximation to
A. To verify this, we use the property that in the high-frequency approximation the operator D, when acting
on a wave constituent dominates D, when acting on a medium parameter. As a consequence, the eigenvalues

of a, must be the (local) vertical components of the slowness vectors squared. In particular, ¢;',¢;!, ¢;! are
the slownesses of the different modes for vertical propagation ( ia; = ia; = 0). Since

det(a;) # 0 when (i, i, el ¢, ety # (0,0,0,0,0), (37)

the operator A is elliptic with parameters ;' e;t, et A similar analysis applies to the matrix A,,. These
properties essentially guarantee that all powers of A and A, exist. The symbol calculus over the extended
phase space spanned by the coordinates (xy,icy,cy l,c‘;l,c; 1y provides the tool to calculate these powers
[4,25].

3.2, The tensorial one-way wave equations

To construct a non-trivial solution of Egs. (30) and (31), we follow an Ansatz procedure. Assume that iéi)
‘can be chosen such that

LA A1, = Ay A 15, (38)
ie., assume that L.¥) commutes with A, A;,. Then, Eq. (31) can be rewritten as

L (Ag A, — T Ty = 0, (39)
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Using the condition that Ker(£{*’) = 0, we find that the ["*) must satisfy the equation

AyiAp, - TET® o (40)
From this equation it follows that

['® = 41" with T = (A,4,2)% = A, (41)

for a properly defined square root of the (positive definite) matrix operator As1A; . Using Eq. (40) in Eq.
(30), one obtains

A1,2A2,1I:fi) = tfi)Az,lz&Lz, (42)

of which obviously ﬁfi) = Al,z is a solution. Using this in Egs. (28)-(29), it follows that a possible solution
is given by

L =+, L®=A4,,. (43)

Since L(i) as given by Eq. (43) satisfies Eq. (38), our starting assumption is justified. Thus, the composition
matrix L becomes (cf. Eq. (26))

; A A
L=
<F -T ) (44)
From this the corresponding decomposition matrix L~! is found as
R 1 (AD) f—l
L—-l — .
(a5, )

for a properly defined inverse of the matrix Al,z.
Upon applying I.7! to Eq. (24), it is found that

BWr + sAruWar = — (L) 14 (85l ) W — LY Bar Ly Wi + @) 1N (46)

Since the matrix A1 » in the left-hand side is block diagonal (cf. Eq. (27)), Eq. (46) represents the desired
coupled system of tensorial one-way wave equations, in which W, is representative for the downgoing waves
and W, for the upgomg waves. As far as the left-hand side in Eq. (46) is concerned, these waves travel
independently and I' is their vertical slowness matrix. In the rlght-hand side of Eq. (46), the up- and
downgoing wave constituents are ¢coupled at any depth level where 63LM,K or 0;Y differ from zero.

The procedure followed thus far has achieved a decomposition of the total wave motion into collections of
downgoing and upgoing constituents, while a separation into the different polarization states has not yet taken
place. This separation will be discussed in the next section.

.4. Decomposition into polarization states

For the decomposition into polarization states the block-diagonal matrix A; s has to be completely diag-
onalized. The high-frequency approximation to this procedure has the convenient property that each of the
elements of the matrix operators involved commutes with one another. In this approximation the principal
symbol @, replaces a, which leads to a corresponding approximation A, of A via Eq. (33). In the present
section we explicitly determine the vertical slowness matrix, the coupled one-way wave equations for the
polarization states, and the composition matrix, on the level of the principal symbols only. Beyond the high
frequency approximation one has to use the full vertical slowness operator to account for lateral heterogeneity.
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To achieve this we write as a first step each wave quantity as its spatial horizontal Fourier representation.
Then the relevant operators can be expressed in terms of their symbols. For F; this implies

Fz(x,l) = (s/2n)2 / I, (iay ) exp(isasxs ) day das, 47)
ay ER2
and hence
(A (e, D) By) (x) = / A x)) B () do] dc, (48)
x, ER2

in which, with the use of Eq. (33),

Ay, x0) = (s/2m)? / a(x,, iy ) explisaqs (x5 — Xo)] da; day. (49)
ay €R2

The kernel A allows for a matrix representation upon discretizing the wave field. Similar relations hold for
the other relevant operators in our formalism. To indicate the symbols in our calculus on the level of their
principal parts, we use the symbol ", In this notation we have

AMA,=A=45 =a. (50)
4.1. The vertical slowness matrix

The principal part I" of the vertical slowness matrix, as this follows from Eq. (41), will now be determined
with the aid of an eigenvalue approach. Let the eigenvalues of A A, , constitute the 3 x 3 diagonal matrix 11
and let M be the corresponding matrix of eigenvectors. Then

BRgyRyp A = FITL (51)

Employing the determinantal equation associated with Eq. (51), it is found that for our medium with
orthorhombic symmetry

Y 0 0
ﬁ:(o 73 0), (52)
0 0 %

in which y?, yz, y3, in general follow from Cardano’s formula for the cubic equation. Upon rewriting Eq. (51)

as A2 lAl , = MTIINM~! and comparing this result with Eq. (40), the vertical slowness matrix follows as
I = M2 e, (53)

where the dlagonal elements of 1'[1/2 are y1,7%2,73 with Re{y123}(iay,ies) > 0. In particular, y,(0,0) =
c5 19,(0,0) = ¢y 1 y3(0,0) = ¢ !, For any power z of I" we then have

3
7 Zf(j) H (54)
j=1,
where (no sum over j)
) = Bty (") 0. (33)
Since M = M (y}) and M~ = M~ (3}), also I'? = TV (37).
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The determination of A7} is standard. Now that the expressions for I', '™ and A[, have been derived, the
up/down composition matrix I as given by Eq. (44) and the up/down decomposition matrix L~! as given by
¥q. (45) are known.

4.2. The scalar one-way wave equations

To arrive at the further decomposition of the up- and downgoing wave constituents into their polarization
states, the matrix I as it occurs in Eq. (46) in the elements of A (cf. Eq. (27)) must be diagonalized. Let ¥
be the matrix of amplitudes of the polarization states, i.e.,

W= V. (56)
Using 'V, = A1V, in Eq. (46), premultiplying the result by A/~! and using Eq. (54), we get
33‘:71 + 5 E],Ml:ll/z‘?M = — [AZI“ (33]‘2')51)}{ + Mt {(]:—1 )1,M(83f4M,K)
+ (@ )I,}/.!EM,JiAJ,K} M1Vg + M (L) 10N, (57)

where

1 0
e=(0 _1). (58)

Observe that the first term on the right-hand side of Eq. (57) does contain a down/down and up/up interaction
term that is responsible for the coupling between polarization states, while the second term is representative for
the up/down interaction. In anisotropic media, the coupling between the polarization states may be large even
in the high-frequency approximation, viz., in directions associated with singularities of the (local) slowness
surface.

4.3. The normalization of the composition matrix
To arrive at the 6 x 6 composition matrix of the polarization states, we set
. M 0
¥ = ( ; M) . (59)

On account of Egs. (23), (44), (53) and (56), the composition matrix that constructs the field matrix out of
the matrix of polarization states follows as the tensor product

e X X

iM = (Y —Y>’ (60)
in which

{ = KoM, ¥ = A (61)
The matrix L¥ diagonalizes the elastodynamic system’s matrix A (cf. Egs. (25), (27) and (53)) according to

R . ﬁl/Z 0

ALM:LM( 0 _ﬁl/Z)' (62)

So far, the normalization of the eigenvectors of the polarization states that constitute M is arbitrary. Since the
elastodynamic system’s matrix A satisfies the symplectic property

AT JY = JYA9 (63)
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ie.,
A, =Y7'A, Y and A, = Y7'A,7, (64)
in which
0 Y-!
Jy = (Y“ 0 ) (65)

is the scaled symplectic matrix, the existence of eigenvectors that satisfy the vertical power flux orthogonality
and normalization condition,

(N (LF1) = K with K = (é _OI), (66)

is guaranteed. In this normalization, using Egs. (60) and (65), it follows that
2X"y v =1 (67)

Starting from a particular normalization, different ones can be chosen at one’s convenience upon replacing
the given M by MpB, where B is a 3 x 3 diagonal matrix. Then X7 is replaced by X7, Y by Y5, and the
right-hand side of Eq. (67) by g21.

As indicated by Schoenberg and Protazio [26], the structure of Eq. (60) also simplifies the structure of the
Zoeppritz equation for the reflection and transmission at an interface.

4.4. Two special cases

Two special cases will be discussed: the hexagonal (TIV) and the isotropic medium. For these two cases the
expressions for T and A7, which serve as a starting point for the parabolic approximations to be discussed in
Section 3, are relatively simple, although (complicated) analytic expressions for these matrices exist for the
general orthorhombic case.

For the hexagonal (TIV) medium, we have ¢;; = €2, €13 = 23, Ca4 = Cs5, C6 = (11 — ¢12)/2. Then Egs.
(51) and (52) lead to

=l oy %540, (qSH) (68)
Css Cs5
1
y22 = {b + [b2 — 4c3scss (1 apoy + p) (Cssawaw + ,0)]1/2} (aSV) (69)
2¢33Cs5
1 ,
13 = To—— {b— [b* — 4ésacss (cn auoy + p) (essawaw + P17} (qP) (70)
2c33¢55
where
b = (c33 + cs5) p + [c11cs — (i3 + ¢55)% + cks] ey (71)

We select a mixed normalization, in which the matrix M of eigenvectors gets the form

i €55 o 12  {eia + e33)p + (cucss — ) auay
. ey
(apay)'i? P o (o) { 2¢33Cs573 — 2pess + 201355 aw oty

M = iy _ /% Zias (auay) V2 { (c13 + c33)p + (cricss — ¢fs) auau}

(apap)'? 2¢3365573 — 2pCss + 2013655 Quay

0 —(apay)'?
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55 iy (c13 + ¢33)p + (cric3 — cly)
p 2¢33€557% — 2pCss + 2013655 vy

5 iy { (c13 +e3)p + (enies — 6'123)01;:0!;4} _ (72)
P 2c3305592 — 2pess + 2¢13Cs5 apay

For the isotropic medium, we have ¢;; = ¢ = ¢33 = A4+ 24, cio = €13 = €23 = A, C44 = Cs5 = Cg5 = 1,
where A, u are the Lamé parameters. The simplifications amount to (cf. Eq. (14))

Watp o 2

dll=d22= 1_'_2# H —/1+2‘u,

(73)

while ¢; = cp = [(4 + 2u)/p]"/* is the compressional and ¢4 = ¢s = ¢s = [1/p]'/? are the shear wave speeds.

In view of our analysis in Section 6, it is convenient to express A in terms of x and { in accordance with

At
(= o (74)

with 1/4 < { < 1. Then c;z (1- C)cs Thus

7=r=1= f + aay (SH,SV) (75)
i=9 = ﬁ(l—C)'l'auav (P). (76)
To simplify the notation further, we employ the auxiliary quantity
X = % + avoy. (77)
Then

_m iy U . U
(Cpo) 12 (00,12 \/;2)( 21a1\/;

M = ial _ iaz E_ . E . (78)
(apo) 12 (ap0e,) 172 \/;2)( 21a2\/;

0 _(a#aﬂ)l/z 1

These examples will be used in the next section to illustrate the parabolic approximations.

5. The parabolic approximation

In this section the general features of the parabolic approximation when carried out on the vertical slowness
.operator (as given by Eq. (53)) will be discussed on the level of the principal symbol of the latter. The purpose
of the parabolic approximation is to arrive at a spatial finite-difference representation of the vertical slowness
operator I" (which is, in fact, a sparse matrix representation of its kernel, cf. Ref. [4]). The latter procedure
implies similar representations for A, L, and L.~ (cf, Eq. (46)). To achieve this purpose, the vertical slowness
symbol must be approximated by a matrix with either polynomial or rational elements: its elements will be
expanded as functions of the horizontal slownesses. It is conjectured that the expansion of the principal symbol
implies uniquely an expansion of the higher-order symbols.

The approximations involve either a polynomial (Taylor) expansion. about a particular direction, or a
rational (Thiele) expansion about a particular direction (see Ref. [6]), or either a polynomial (Lagrange)
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interpolation or a rational (Newton) interpolation [27] with judiciously chosen directional abscissas. Both

the Taylor and the Thiele approximations can be straightforwardly carried out on the conditions of mild

anisotropy [28]:

- min{cyy, ¢32, ¢33} > max{ca, cs5, ce6}; 1.€., the slowest bulk wave along any coordinate axis is faster than the
fastest shear wave along any coordinate axis;

— e+ caa>0, ci3 + css >0, ¢ia + ceg > 0; ie., the longitudinally polarized wave is always faster than the
transverselly polarized wave in any of the coordinate planes;

— there is no triplication of the slower one of the two waves that have their polarizations in any of the
symmetry planes as their plane of propagation (this condition can be worked out along the lines indicated
by Payton [29].

These conditions imply that all points on the cross sections of the real slowness surface with the symmetry
planes are convex elliptic about the vertical axis. The third condition of mild anisotropy can be relaxed to: no
triplication on an axis of symmetry or in a plane perpendicular to it, If we want to approximate an off-axis
triplication (as it, for example, may occur in the gSV wave in a hexagonal medium), the interpolation schemes
are the only choice. As far as their respective finite-difference representations (through the vertical slowness
operator matrix) are concerned, the polynomial approximations allow for explicit schemes whereas the rational
approximations necessarily lead to implicit schemes (see also Ref. [3]).

5.1. Constraints

To obtain a physically acceptable approximation at all, i.e., one that preserves the characteristics of the
propagating waves, the following constraints are imposed:
— the ellipticity of A is preserved;
the singularities on the wave front near the preferred direction of propagation are preserved,
artificial multiple points of the sheets of the approximate real slowness surface are avoided;
artificial precursors to the exact wave front are avoided,
the Green’s functions of the approximated tensorial one-way wave equations have a physically acceptable
space-time counterpart.

5.2. The two-level parabolic approximation scheme

Our two-level parabolic approximation scheme is characterized by an independent treatment of the roots
yi, J = 1,2,3 and their squares y]Z as they occur in Eq. (54). For their parabolic approximations we use
the notation y;” ) and (y})(” ), respectively. Through this procedure the accuracy is best maintained, although
one might argue that it shall suffer from some inconsistency. The minimal order of the approximation is
determined by the canonical form of the slowness surface parametrization following from singularity theory.

In the correspondingly approximated first-order hyperbolic system, we first retain the relation (cf. Egs. (41)

and (54))
. 3
Kihip = Y TOGH®) ) (79)
j=1

Secondly, we choose to keep the matrix A, , in its exact form, since it is already polynomial in the horizontal
slownesses. As a consequence, we must replace the matrix A,; by its parabolic counterpart

3
Aoy = Y TN A )2 (80)

j=1
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tine) P and g8V sheeis of the slowness surface of a par- line) gP and qSV sheets of the group velocity surface
ticalar TIV medinm (4-point pelynomial interpolation in associated with the slowness surface of Fig, 1.

the horizontal slownesses squared).

For an isotropic or elliptically anisotropic medium yf: need not be approximated at all, whereas for general
TIV media sensible expansions about the elliptically anisotropic case exist. In those cases where also y} is
subject to an expansion, the orders to which y; and y} are expanded must be mutually compatible, i.e., should
be equal.

Tlustrations of the different order Taylor and Thiele expansions for isotropic media have been given in Ref,
{8]. In particular, the first-order approximations y{ and y of yp and ys are given by

V}Is,s = C‘{{é + (1/2) cpsapay. (81)

For a hexagonal (TIV) medium with ¢;1/p = 7,¢13/p = 2.5,¢c33/p = 5.5,¢55/p = 1, {ces/p = 1.463) Fig. 1
shows the result of a 4-point Lagrange interpolation in the square horizontal slowness applied to y2 (qSV)
and y; (qP) based on matching the vertical slownesses at equally spaced phase angles up to 72 degrees {which
gives an optimal fit) away from vertical. Fig. 2 shows the corresponding group velocity surfaces that follow
by taking the polar reciprocal of the real slowness surface: introduce the function

3
H(s1,52,83) = ] JIs3 = v (is1,is2) 1. | (82)

j=1

The approximated (phase) slowness surface is then given by

H =90, (83)
and the corresponding group velocity surface follows as
o5, H
SO EN AT (84)
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line) qSV sheet of the slowness surface of a particular TIV line) qSV sheet of the group velocity surface associated
medium (8-point rational interpolation in the horizontal with the slowness surface of Fig. 3.

slownesses squared).

Fig. 3 shows an 8-point Newton interpolation in the square horizontal slowness of y, based on matching the
qSV vertical slowness at equally spaced phase angles up to 70 degrees. Fig. 4 shows the corresponding group
velocity surface. The latter results fit in with Kitchenside’s 9-point like approximation; however, we employ
odd order rather than his even order interpolation schemes. The explicit expressions are given in Appendix A.
The approximations in Figs. 1 and 3 lead to the most compatible matrix equations in their respective implicit
finite difference representations for down/upward continuation.

Note that in the rational approximations complex poles in the horizontal slowness (a;-) plane turn up.
Their contribution yields time-domain counterparts that occur in the wake of the wave phenomena and do
not disturb the accuracy of the results right at or just behind the wave fronts.

The approximations to y; and y? (qSH) are standard and are not shown.

5.3. The ‘moving frame’ of reference

For the numerical implementation of Eq. (46), it is advantageous to transform the constituents of this
equation to their respective ‘moving’ frames of reference. Using that in the limit a;, — O the matrix I’
becomes diagonal, it is found that the change to the moving frames is given by Wl,z — Wy with

W, = exp(—sT)wi, W, = exp(sT)w, (85)

with the vertical travel time matrix defined as
x3
T= / cdg, v (86)
{=0
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in which C is given by Eq. (6). For near vertical propagation in a source-free domain our parabolic
approximation scheme is closely related to the ‘moving frame’ of reference approach as it has been discussed
by Claerbout [2] for the propagation in a fluid medium. To show this we restart from Eqs. (18) and (20),
and substitute in them the expressions

Fl,z = exp(—sT) fl,z. (87)

The procedure leads to (use that C is diagonal)

85y — sCH + sALf, = 0, (88)

Oty — (sC —E4,) £ + sA%,f =0, (89)
where

Al, = exp(sT)A  exp(—sT), Aj; = exp(sT)A,, exp(—sT) (90)
and

8y, = exp(sT) Eyp exp(—sT). (91)

Eliminating f, from the equations above and neglecting the derivatives of Al,z, Az,l, Y and C with respect to
X3, leads to

—02(CTHAL) ) + 58 (CTH{AL) L C ) + 2 (CTIAL S A TTo) g = o. (92)

Here, {.,.} denotes the anti-commutator. Next, we neglect the first term on the left-hand side with respect to
the remaining ones, which is motivated by the fact C is such that the last term is small for vertical propagation.
With the substitution f, = Al,z(v"vl) ({---) denotes the approximation, with (w;) = 0) the equation above
resembles the classical parabolically approximated wave equation

83 (C™Y(A15) 7, CYA 2 (1)) + s (CTTAS,A 5 — (Al,) 7' CAL) (W) = 0. (93)

6. The space-time elastodynamic Green’s tensor in a homogeneous isotropic medium

In this section we determine some significant features of the space-time elastodynamic Green’s tensor
(particle velocity of the wave motion generated by a point force) in a homogeneous isotropic medium in the
parabolic approximation. The jump conditions representing the action of the source in the notional sources of
Egs. (9)-(10) are assumed to survive the parabolic approximation. For the space-time domain evaluation of
the scalar Green’s function in the parabolic approximation, which we will use in the subsequent analysis, we
refer the reader to a previous paper [6].

6.1. The exact case

For a point force with signature a;J (¢) operative at the origin, the relevant particle velocity is given by
[30-33]:

vi = (87Gyj) aj, (94)
where (see also Appendix B)

Gy = G + Gy = 52 6,;G° + DiD; (G* - G°), (93)
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in which
1
ps_ 1 .
G = 47tpRH(t Trs), (96)
with
Trs = R/cps (97)
and R = (x;x;)"/2. Here, D; is defined through its Laplace-domain counterpart D; = D; = —s~'8; and

amounts to a spatial differentiation and a temporal integration in the space-time domain.

The near-field region
In the near-field region the P- and S-wave contributions are non-separable and have to be taken together. It
is found that

NN S S L L (s XXy ]
Glj fand {C§5U47T,DR + <2C1% 2C§) (61] R? ) 47tpR} H(t), (98)

as R — 0. Equation (98) shows that the singularity at the source is of order O(R™!) and is indicative for the
asymptotic behavior as ¢ > Tps [30, p.75].

The far-field region
In the far-field region the P- and S-wave constituents are markedly separated, and we have
P JLlxixj 1 _ _
Gij = {6‘12, R? dnpR +0@-Tp)y H(t —Tp) (99)
and »
1 XiXj 1
G?~={¥(5ij—#)m+0(t—m} H(t—Ts). (100)

Egs. (99)-(100) are indicative for the asymptotic ray solution [30, p.74].
6.2. The parabolic approximation

In the first-order parabolic approximation we carry out the replacements
e | (101)

where y§ and yé are given by Eq. (81), while y3 and y§ are left as they are. Next, the resulting expressions
are transformed back to the space-time domain with the aid of the modified Cagniard method [8,30-32]. The
correspondingly approximated space-time Green’s tensor is then found as (see also Appendix B)

1

Gl = G + G = 52613533 5 [Gg” + cssgn(x3)D3GS”} + 6526005 G + DiD; (G -G, (102)

where the parabolically approximated scalar P-wave function is given by (see Ref. [6])

1

amper 22— (T3y) 2172
1

dmper 2 — (T1,)2]2

[ZH(t —Tho) —H(t— T{)] if r/|xs| > V2,
G = (103)

H(t-T%) if r/)xs) < V2,




M.V, de Hoop, A.T. de Hoop/Wave Motion 20 (1994) 57~82 75

448.0

« vertical offset (m)

500.0 R 5t S SR S

Fig. 5. Snapshot at ¢ = 0.450 s of the parabolic scalar P-wave Green’s function in space for x3 > 0 with ¢p = 750 m/s.
{The horizontal offsets are numbered sequentially.)

with
2
To=v3l, w=lfi, 104
o=Vl  Ty= 1t *om (104)

in which r = (xux,)"/? is the horizontal distance from the source. This function is shown in Fig. 5. Note that

T > T, when r/|x3| # v/2. A similar result holds for the parabolically approximated scalar S-wave function.
Further,

SI _ 1 [2H(t-To) —H(t - T if r/x| > 1, (105)
0 87zpcs[(t——1'0)2—(To—ro)2]1/2 H(I—TSI) if r/|x3[<1,
with
_ bal _ po bl
= 2’ To= Cs + 7o, Ts = Cs L+ 2x2 )’ (106)
The latter function is either found upon transforming the spectral-domain contribution
112 1
-2 (y5) 28,1 1 ¥s 7
Cg 2 G = exp(—sys|x
S Cs_z + o 2s2pC§ Cé_z + QO p( ySI 3|)
i 1 1| 1 7
- 2 B D - 1
7| &+ clonan + CS] 355 exp (—sys]xs3]) (107)

to the space-time domain with the aid of the modified Cagniard method (see Ref. [6]) or upon applying a
proper scaling to Eqg. (103).

The differentiations occurring in Eq. (102) are carried out in Appendix C. The P-wave contribution is then
found as

ijl = DiD;GY + 813953 (2p) 16 (a1, X0, 33) 2 H (1) = Gf;H + G (108)

ij »
where the artificial head-wave contribution is
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o ! 2xwxy L 1 2xpXy 1o ot y2y12
G = 47zpcP{ 72— (11,2117 il G S |5 18 = (Teo)”]
[2H (1 — TLo) —H(t —TE)1 if r/|xs| > V2 (109)
H(t—T}) if r/|xs| < V2

(the other elements of the tensor G vanish), while the body-wave contribution is

oo L f 12 o N L (28 g ALy g\ o n
Gu = 4npcP{ 2( 7 T ow cplxa| ER T b r + [t ij)v H@-Tp), (110)

5 _ B _ L xp 1 ol
G,y =0y = Tnpor %3 cP[x3|H(t 1p), (111)

4npep | cplxs)] 2x3

2
e {_1_<1—_”—5> +xi§[t—Té]}H(t—T§)+51-5(5(x1,x2,x3)t2H(z). (112)
Note that upon taking G5 and G4 together, the factor r~* in the second terms vanishes in the Taylor
expansion about ¢ = T¢. Thus, at r = 0 the solution is regular. The S-wave contribution follows along similar
lines. Further, it is noted that the direct source term in Eq. (112) is the same for P and S waves. Hence, this
term vanishes in expression Eq. (102).
Finally, it follows that

i

=—H({-TH. 113
475,DCSIX3| ( S) ( )

sgn(x3)D3G
This completes the evaluation of the right-hand side of Eq. (102).

The near-field region
Just as in the exact case, the P- and S-wave near-field (¢ > Tl{s) contributions in the parabolic approximation
are not separated and have to be taken together. It is found that several cancellations occur. The result is

1 1 1
G, — —( )5 ———H(), (114)
# a Y 4z plxs]
I Y
G/ﬁ: G3;¢ ( >X3 47ZPIX3| ( )7 (115)
Gl (£ - ._1 L H() (116)
3 cp 4np|xs| |xs ’

which determines the order of the singularities in the limits » — 0 and x3 — 0. The differences as compared
with the exact expression {cf. Eq. (98)) are noteworthy.

The far-field region
In the far-field region (¢ — T§, or ¢ — T¢) the P- and S-wave constituents can, again, be separated. In the
neighborhood of their body-wave fronts the P-wave contribution is found as

2\ !
GE’J={iM—1——(1—’—) +0(z—ﬂ£>}H<z—TéL (117)

& x2 Ampl|xs 2x2
PI _ PI _ 1 Xu 1 L
G#3 = G3# = c2 o _4ﬁp|x3| H{i-T1p), (118)

P, 1 1 ¥ .l 1
Gy =8 5——|l-57)+00-Tp) ) H(t-Tp), (119)
3

& 4nplx;| 2x
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Fig. 6. The far-field radiation pattern for P waves due to
a vertical point force (in the plane x; = 0). The sphere
corresponds with the exact pattern and the double oblate
spheroid corresponds with its parabolic approximation.

while the S-wave contribution is

Fig. 7. The far-field radiation pattern for S waves due to
a vertical point force (in the plane x, = 0). The shaded
arrows should be multiplied by 5. The sphere corresponds
with the exact pattern and the double oblate spheroid cor-
responds with its parabolic approximation,

-1

I 1 x![xV 1 r2 7 J

=6, — —(1-— o-THVHE - T, 1
G {Cg (5# = ) i) +OU-THE-T) (120)
=Gy =t 1 go_ g (121)
K3 s c2 x3 4mp|x;)| ’

172 2\ r?

Gl={==(1-=) ——(1-—=+00u-TH HUC-T). 122
33 {Cé x% < xg) 47[,01)(73] ( zxg + ( S)} ( S) ( )

To obtain the latter results, the following estimates were used:

-1
S, 1 2y 1 1
W 1 — — — _

G {47CP|X3| < 2x§> + o Ts)}mz ), (123)

-1

G = 1 1-ﬁ +0u-THVHE-T)), (124)

0 drplxs| x3
1
cssgn (1) DsG™ = o H - TH). (125)

The corresponding radiation patterns are shown in Figs. 6 to 9. (For the exact expressions Fig. 8 is obtained
from Fig. 6 by a rotation over n/2; likewise Fig. 9 is obtained from Fig. 7 by a rotation over z/2; in the
parabolic approximation this is no longer true.) Accurate results are obtained in a cone centered on the vertical
axis. The head-wave-like arrivals were not considered; they follow from a different expansion, viz., the one

about ¢ = T§, or about ¢ = T,
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Fig. 8. The far-field radiation pattern for P waves due to a Fig. 9. The far-field radiation pattern for S waves due to a
horizontal point force (in the plane x, = 0). The shaded horizontal point force (in the plane x, = 0). The sphere
arrows should be multiplied by 5. The sphere corresponds corresponds with the exact pattern and the double oblate
with the exact pattern and the double oblate spheroid cor- spheroid corresponds with its parabolic approximation.

responds with its parabolic approximation.

7. Discussion of the results

Through an appropriate two-level operator approach a consistent scheme for the up/down decomposition
of elastic wave fields in inhomogeneous and anisotropic media, and their subsequent decomposition into
polarization states has been developed. The procedure has been worked out in detail for the class of or-
thorhombic media and lateral variations are taken into account. The high-frequency approximation to the
operator approach is shown to be amenable to matrix manipulation in the conventional horizontal Fourier
transform domain. The hexagonal (TIV) and the isotropic case are discussed as examples. Finally, the space-
time peculiarities and artifacts of the corresponding two-level parabolic approximation to the particle velocity
of the elastic wave motion generated by a point force in a homogeneous, isotropic solid have been discussed
in detail.

In the context of migration, it is conjectured that the downward continuation part should be carried out
prior to separating the polarization states, but that with a view to inverse scattering it would be attractive
to do the separation just before imaging to generate sections for the different mode conversions. An accurate
wave speed model is still a prerequisite; such a model can, in principle, be obtained from the arrival times of
the individual polarization constituents using traveltime inversion.
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Appendix A. Approximations of the vertical slownesses in a TIV medium

In the example of a TIV medium, we employed the following schemes to approximate the principal symbols
vy and y%. The azimuthal isotropy is exploited through the notation

a=(af +ad)'?, y(?) = y(io,0). (A.1)

The Lagrange polynomial interpolation of a branch y(a?) of the slowness surface through the points

{ad,a?,a2, -} is given by

r? (%) = > ua?) y(a]), (A2)
k

with

2 2
(o?) = Hi;!k(a - o)
U = @ )
ik Nk i

‘The Newton continued-fraction interpolation of a branch y (o) through the points {a2, 02,02, ---} is given by

(A.3)

2 2
& —
P () = ag + b , (A.4)
a —al
a + — 3

« ‘—az
a +

a + .-

with coefficients ax = vy (a}), where

o? - o2

(@) —v(ad) (A.5)

vo(a®) = y(a?), Vksi(a?) =

From these expressions similar approximations can be obtained for the squared vertical slownesses.

Appendix B. The transform-domain particle velocity in an unbounded homogeneous isotropic solid due to a point
force

In the spectral domain, the acoustic wave field generated by a point force located at X1=X=x3=0
in an unbounded homogeneous isotropic solid, can be written as the superposition of its eigenmodes through
Eqgs. (60)-(61)). The procedure is standard, but, in view of the parabolic approximation, we have to take
care to treat yp, ps and their squares independently. :

The spectral-domain elastodynamic Green’s tensor decomposes into a P-wave part and an S-wave part
according to (cf. Eq. (17))

i = sG] + GY)) aj, (B.1)
where the P-wave part is found as
. 2% —
—aj - 1oy sgn(xs) e }2 2%
cs + Qe
o . 2% —«a .
G = —ajo -a3 ionsgn (x3) ppL 2222 | e (B.2)
CS + Qg
. . : 2y — ap
iagsgn(xs) e iapsgn(xs)ye yoyp 2o S%0.

cg” + axox
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with
GF = L exp(—syp|xs|) (B.3)
2s2pyp
and the S-wave part is found as
s> 0 0
- -2
¢ = 0 s (J)’sys
0 0 ¢?—
Cg + axax
. 2y —
—af —aion lalsgn(xa)ys%——q’ﬂ—p
CS + Qg s
- . 2y — ¢
— —a% 1azsgn(X3)}’s-_wﬂ—p o
i CS -+ s Y0 4%
icysgn(xs)ys icosgn(xs)ys s¥s
(B.4)
with
5 = L exp(—syslms)). (B.5)
252pys

In the exact expression, yp,ps and y retain their exact values as given by Egs. (76)-(75) and Eq. (77); in
the parabolic approximation, yp and ys are replaced by their approximate values as given by Eq. (81). As
Egs. (B.1)-(B.5) show, the elastodynamic Green’s tensor can be expressed in terms of the Green’s function
of the scalar wave equation under the application of the standard differentiation and integration rules of the
one-sided time Laplace transformation and the spatial Fourier transformation. The latter property applies to
the exact expression as well as to the parabolic approximation.

Appendix C. Evaluation of the first-order approximated elastodynamic Green’s tensor

In the space-time equivalent of the parabolically approximated Green’s tensor functions of the type

|

g = [2 — T2]12

H(t—T) (C.1)
occur, where T; and T, are functions of x;, with 73 < 7,. The operator D; has been defined through
D; = —s~'9;, where s is the time-Laplace-transform parameter. We will evaluate D; G and D;D; .

First consider the case where 7 < T5. Then, in the distributional sense, it is found that

(6;Th) t _ 11 (0;1) — T,(9;T1)
T, [tz_le]l/zH(t 1) + T2 - T2\

D;G = H(-T). (C.2)

If T2.= T, D; G follows from the diagram

1 D; (0;11) t
'[ﬂ——le]lﬁH(t“T‘) — JTI [t2—T12]1/2H(t—T1)
e lc (C.3)
_s—la;
Ko(sT}) R (8T1) Ky (sTy)

where K; and K, are the modified Bessel functions of the second kind and orders zero and one, respectively,
and £ denotes the Laplace transformation with respect to time.
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The second-order derivatives are found as

L H(t—Ty) + (8:T1) (8, Ty) — Ty (8;0;T;)

Ding = (aiTl ) (6,-T1) [tz - le]l/ZH(t - TZ)

[E =T T2
(0;T1)(0;Th) — (6;T2) (0, T>) (0:11)(9;T1) — T1(0:0;T1) 1z 2172
- T S H(t-T;) - . 7 T - TP H (- Ty)

QT -THLGT) T  TRHET) (0T + (8:T2) (8;T1)] — TET(8:T2) (8, 1)
T[T} — TE]32 T[T} — TE)32
1,(8:0,T1) — T1 (8;0;T»)
Tl[TZ2 - le]l/2

}(I—Tz)H(t—Tz) (C.4)

if T} < T3. In the case T, = T}, we employ the diagram:

(5;T1) ¢ D;
T o= = (8:T1) (9;Ty)

1
[Z‘Z—le]l/z H(t—Tl)

OIOT) “TOOT) 12y e,
e 1 le (C.5)
(6:1T1)(6;T1) Ko (sTy)
6,T1) K1 (sT}) —s~'oi + (3iT1)(3jT1;: 11(6,0;T) K, (5T1)

So far, we used the equalities K}(z) = —K;(z) and K{(z) = —z7'K (z) — Ky(z).
In our application, we have

r _ |xl T
27, Tz—c(1+ ) (C.6)

Il

T
! 2x2

with ¢ = cp,cs, and r = (x,x,)"/%. Note that T» > Ty when r/|x3| # v2; only for r/|x;| = v/2 we have
T, = Ti. From Eq. (C.6), it follows that

V2 x 2
o1 = TTI’ 0Ty = %%, 03T =0 (C.7
and

_1x _1x 1

o1, = cTol 0T = Tl sgn(x3) 0; 1, = p (1 %) (C.8)
while
\/lexZ 2 \/Z x2 2 \/z x2 2
6162T1 =—7—C-_-——’T, alTl - -’? l—r—; ’ 62T1 =7 l—r—g ) 83T1 =O (Cg)
_ which diverge as r | 0, and
2 2 11 2 1 I‘z
3162T2 - 0, (91 Tz = 62 T2 = -C—]—.SC_;P 63 T2 = E?P (CIO)
Further,
2 21172 |x3| r? i

-~ T = 2 - — . .

[T3 - T7] p 2% (C.11)

The latter equations have to be substituted into Egs. (C.4)—(refeq:3.A.5).
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