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Abstract: A combination of the Neumann series solution and the modified Cagniard method is
used to derive a theoretically exact space-time domain solution for the 3-D acoustic wave prop-
agation problem in continuously layered media. First, transformations are applied to the basic
acoustic differential equations. Most importantly, this includes a one-sided temporal Laplace
transformation with real positive transformation parameter. Secondly, the transform domain
differential equations are converted into a system of integral equations, which in turn leads to a
convergent Neumann series solution. Finally, the individual terms are transformed back to the
space-time domain using the modified Cagniard method. In contrast to the standard angular

wave number/frequency domain analysis, difficulties due to ”turning rays” are avoided.
1. INTRODUCTION

In this paper we investigate the influence of vertical inhomogeneity of a fluid on the prop-
agation of transient acoustic waves. The applied method is an integral transform method. It
consists of three basic ingredients: transformations with respect to the time coordinate as well
as the horizontal spatial coordinates, the solution of the resulting transform domain differential
equations, and the transformation back to the space-time domain. It is now standard practice to
apply integral transform methods to configurations consisting of piecewise homogeneous layers
[e.g., Helmberger (1968), Wiggins & Helmberger (1974)]. It is less common practice to use inte-
gral transform methods in the investigation of wave propagation in purely continuously layered

- configurations; this approach was originated by Chapman (1974, 1976). We, too, shall follow
the approach in which the continuous behaviour of the medium parameters is understood right
from the start. :

As far as the time coordinate is concerned, the Laplace transformation with real and positive
transformation parameter will be employed, which takes causality explicitly into account. The
Fourier transformation will be used for the spatial transformation with respect to the horizon-

tal coordinates. In the transform domain then a wave propagation problem in the vertical spatial
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coordinate remains. To solve the relevant one-dimensional differential equations we will apply
the WKBJ iterative solution [Chapman (1981)]. In the frequency domain approach the WKBJ
iterative solution can break down due to a zero vertical propagation coefficient (which occurs at
a turning point). Owing to the use of the time Laplace transformation this difficulty is avoided.
The final operation is the transformation back to the space-tirﬁe domain, which we will perform
using the modified Cagniard method.. This method is also known as the Cagniard-De Hoop
method or the generalized ray method [Cagniard (1939, 1962), De Hoop (1960, 1988)].

The resulting overall method turns out to be applicable to all horizontally layered media with
parameter profiles that are everywhere continuous and piecewise continuously differentaible with

respect to the vertical coordinate.
2. CONFIGURATION AND BASIC EQUATIONS

The configuration to be investigated consists of a point source and a point receiver of acous-
tic waves. Both are situated in an isotropic fluid that is invariant in the horizontal Carthesian
directions ¢, and ®2, while its properties are continuous and piecewise continuously differen-
tiable in the vertical direction z3. Using the subscript notation and the summation convention,
where lower-case Latin subscripts range from 1 to 3, the space-time domain linearized acoustic

equations can be written as

Okvr(ziyt) + £(z3) Oip(=i,t) g(zi,t). (2.1)

Okp(zi, t) + p(z3) Opvk (i, t) Te(ziyt), (2.2)

Here, p is the acoustic pressure, v is the particle velocity, p(z3) is the volume density of mass of
the fluid and k(z3) is its compressibility. Further, §; and §x denote differentiation with respect
to time and the coordinate zj, respectively. The action of the source is accounted for by fi, its
volume density of volume force, and g, its volume density of volume injection rate. Throughout
our investigation the source is taken to be a point source, and without loss of generality we may

assume that

{a(2i,t), (20, 8)} = 8(1, 22,83 ~ 25) {Q°(t), FE (1)} (2.3)
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3. TRANSFORMATION OF THE BASIC EQUATIONS

First, the space-time domain quantities are transformed to the space/temporal Laplace do-
main according to

B(zi, 8) = /(.:’ p(zi, t) exp(—st) dt. ' (3.1

Following Cagniard (1939, 1962), the transformation parameter s is taken to be real and positive;

this choice is characteristic for the modified Cagniard method. Secondly, a two-dimensional

spatial Fourier transformation with respect to z; and z;, defined by

. oo poo .

play, sz, 23,8) = / / Bz, s) explis(ai 21+ azzo)] dey dzy, 3.2)

—_00 =00
brings us at the final transform domain. The corresponding inverse Fourier transformation is
g \2 poo poo .
p(zi,s)= (E) / / P, oz, 23, 5) exp[—is(a121 +aszs)] dag day. (3.3)
—o0 ¥ —00

Note that the actual Fourier transformation parameters are sa; and sa;. Applying the respective
transformations to the basic acoustic .equations (2.1) and (2.2), and eliminating #;, and 1:52, we arrive

at the transform domain differential equations; in matrix notation these are

- - ]
G 0 7(23)Y (z3) | | o3 sy| @
8| 2 3| = 6(z3 —
: [ j ] *e [ eV Nes) 0 |70 s GF
in which
7(za) = [c7(23) + of + 3]'/* (3.5)
is the local vertical propagation coefficient or local vertical slowness,
7(z3)
Y(z3) = (3.6)
(es) p(z3)
is the local vertical acoustic wave admittance, and
e(23) = [p(e3) K(wa)] /* 3.7)

+ 8 ~ S
. is the local acoustic wave speed. The quantities § and F are the transform domain notional

source strengths. Equation (3.4)can be written as

635[ + SAI_](:Bg) BJ = 1:11, (3.8)
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where the upper case Latin subsripts take on the values 1 and 2. In this equation by is denoted

as the acoustic state vector, Ars(z3) is the system matrix and f17 is the source strength vector.

4. SOLUTION OF THE SYSTEM OF TRANSFORM DOMAIN
DIFFERENTIAL EQUATIONS

As a first step in solving the transform domain equation (3.8), we decompose the system

matrix As(z3) according to Ary(z3) = Nk (z3) Axr(z3) NZ}(23). In this equation

7(z3) 0
A = 4.1
wifea) { 0 ~1(es) ] @
is the eigenvalue matrix of Ajy(z3), whereas
. Y1%(z5)  ~Y/*(z3)
NIK(QB) = ‘2-'\/-2. [ Y_l/z(za) Y_l/z(zg) (4.2)

is the matrix of normalized eigencolumns of Arj(z3), also denoted as the composition matrix.

We define the wave vector w7 through the composition relation
by = Nys(z3) Wy (4.3)
Using eqs. (3.8) and (4.3),. the wave vector differential equation is found as
Oswy + sA1i(z3) W= AIK(zg)v:vK + N;}(z3) , 4.4)

where the so-called coupling matrix Ak (z3) is given by

Arx(zs) = —Nij(es) [83N(z3)] x = [ X(2,3) X(SB) ], (4.5)
in which
x(2) = 85Y (3)/2Y (w3) = 1a[ln¥ (sa)] = —~—r22528)___ Gop(wa) (4.6)

2c3(z3)y%(es)  2p(2s)
is the local reflection coefficient or inhomogeneity function. Using standard Green’s function

methods, eq. (4.4) is recast into the integral operator equation

8w

r=Llrydg+ ;LI, 4.7
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in which the integral operator Ly is defined by

xT

3 "

) x(z%) exp(—s f:g" v d¢) ws dz}

LIJ’[I)J = —Oom ' 1-' N f . : (4‘;8)
- / x(z3) exp(—s fx: v d¢) W deg

x3

The source vector hy at the observation level z3 is given by

z3
+VEAH(ea - 2f) exp(s [ 7d0)
%3

by = : (4.9)
—;-ﬁBH(zg—za)exP(—s/ 5 d¢)
z3
with

:,S ;S
= F YV5)+Q Y~ V3(=5), (4.10)

:_S' ~ S
B = F YY%(25)-Q Y Vi), (4.11)

where H(z3) = {1,,0} for {z3 > 0,23 = 0,23 < 0} is the Heaviside unit step function, which
occurs in view of causality. The solution of eq. (4.7) can be found by using the Neumann series

solution, also known as the WKBJ iterative solution, given by

br=o" + " 450 4., 4.12)
in which R ‘
W= by 6= (4.13)
Lpywy °, (6=1,2,--).
Using eq. (4.8), the second line of eq.(4.13)can be written as
':-(i) . 3 ! _ T3 d ’-’-('.“1) d / . 4 14
w = [ x(z%) exp( 5fz_!, v d¢) 4, (i=1,2,...), 4.14)
a0 = - / x(@h)exp(—s [y d¢) 5V day,  (i=1,2,..). 4.15)

In view of the fact that the Laplace transformation paramater s is real and can be chosen ar-
" bitrarily large, the norm of the operator Lr; in eq. (4.8) can be made less than unity provided
that 4(z3) remains bou.ﬁded away from zero and that x(z3) remains bounded [De Hoop (1990)].
For all real values of a; and ay, i.e., those values used in connection with the inverse‘spatial

Fourier transformation, these requirements for the convergence of the iterative scheme are always
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met for configurations with parameter profiles that are continuous and piecewise continuously
differentiable with respect to z3. Moreover, Lerch’s theorem [Widder (1946)] ensures that the
convergence of the Neumann series carries over to the causal time domain solution. Once we
know the series solution of the wave vector Wy, we can apply the composition relation (4.3) to

obtain the series solution of the acoustic state vector 51.

5. PHYSICAL INTERPRETATION

The results of €gs. (4.9), (4.13), (4.14), and (4.15) indicate that all 'ﬁ'}&i) represent waves that travel

in the direction of increasing z3, while all ﬁ')g) represent waves that travel in the direction of
decreasing z3. According to eq.(4.13), the direct or zero order waves &,’go) and ﬁ'zgo) are directly

generated by the source. Next, each higher order iterate is generated from the reflection of its

previous one traveling in the opposite direction.

6. INVERSE TRANSFORMATIONS

After the transform domain solution has been found, we return to the space-time domain
,using the modified Cagniard method of inversion [De Hoop (1960, 1988)]. This will be illustrated
by considering the zero order pressure wave travelling upwards from a volume injection type
source to a receiver on a more elevated level, i.e., p(®)~. Subsequently, we will shortly describe
the inverse transformation process for a first order wave. Upon using eqs. (4.3), (4.9), (4.11) and

)

(4.13),and applying the inverse Fourier transformation(3.3)to 1»3(0 ", we obtain an expression for

$(0)= at the receiver level zf. This can formally be written as

in which the Green’s function G(®)~ thus introduced contains s only in its exponential part of

the representation

R -1 @ fp>® =5
¢O-= = / / T exp[—s(iara1 +ioszs + [7F 7 dC)] da dag, (6.2)
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where

1 =Y ~/*(25) Y172 (F) (6.3)

represents the coupling of the wave with the source and the receiver. Since the configuration
shows rotational symmetry with respect to the z3-axis, we can without loss of generality take

z1 =1 > 0, 25 = 0. Replacing ia; by p and a3 by ¢, eq. (6.2) becomes

G- ¢ /_ ~ Texpl-s(pr+[73 7 d¢)] dp da. (6.4)

817 oo oo
Here, p is the horizontal slowness. Quantities in which ay, ay are replaced by p, ¢ are indicated

by an overbar; the vertical propagation coefficient or vertical slowness follows from eq.(3.5)as
- - 1/2
F(zs) = [c2(zs) - + 47| - (6.5)

As a next step we deform the path of integration from the imaginary p-axis into the so-called

modified Cagniard contour, defined by
=3
r=prt [0, (6.6)
T3

where p is such that 7 is always real. In order to do so we continue the integrand analytically
into the complex p-plane. We define Re(¥) > 0 in order to keep the square root in eq. (6.5)
single valued. The singularities of the integrand in eq. (64) are the branch points associated
with 7(25) and 5(z%) in I and associated with the integral of 5(¢) in the argument of the
exponential function. All branch points will be provided with branch cuts along the positive
and negative real p-axis, respectively, from the relevant branch point to infinity. In view of
Jordan’s lemma we are, since r > 0, only allowed to deform our path of integration into the
right half of the p-plane. Applying Cauchy’s theorem and Jordan’s lemma, we find that the
integration along the imaginary p-axis can be replaced by an integration along the complex part
_of the modified Cagniard contour. The contour is symmetrical with respect to the real p-axis
and the integrand satisfies Schwarz’ reflection principle; further the integrand is an even function
of gq. Progressing along the contour away form the point po where it meets the real p-axis, 7

monotonically increases from T'(g) to infinity. This means that we can straightaway replace the
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integration over the complex contour by an integration over the real parameter 7, which gives
GO~ = Py / / Im (11 8,p) exp(—s7) dr dq 6.7)

Interchanging the order of integrations in eq. (6.7) leads to

A(0)- _ Q(r)

G 27‘_2 /m Im (11 8,p) exp(—s7) dg dr, 6.8)
where ¢ = Q(7) is the (unique) inverse of 7 = T(g) and Ty, = T'(0) is the arrival time of the

wave. By inspection we find, on account of Lerch’s theorem [Widder (1946)],
GO = L H(-T,) / Im (T 8,p) dg, (6.9)

which is the desired space-time domain Green’s funtion. The integral in eq. (6.9) can easily be
computed using a Gaussian quadrature rule. Referring to eq.(6.1) and the theory of the Laplace
transformation, the space-time domain acoustic pressure p(o)“ due to a source of volume injection

becomes

PO = 82 [@5(t) % GO-(1)] , (6.10)

where *; indicates a convolution with respect to time.
In the continuously layered case eq. (6.6) can give rise to two different types of contours

[Verweij & De Hoop (1990)], the actual type being dependent upon the sign of the quantity

§

Otlp =r—pc [ [O) = pf + ]

T3

4. (6.11)

Here, py is the leftmost branch point in the complex p-plane, i.e., p; = ps(q) = (c2, + ¢)'/?
with epaz = maxce[zgz;zas]{c(( )}. If 8,7|p, < 0, the countour crosses the real p-axis vertically in a
point pp to the left of py, in which case there is no interference with the branch cuts, see Fig. 1(a).
If 8,7|p, > 0, a case which is impossible for piecewise homogeneous configurations, the complex
part of the countour meets the real axis horizontally at pp = p; and the modified Cagniard
contour must be supplemented by a small circle with radius § > 0 around the leftmost branch
point, see Fig. 1(b). In the limit § — 0, this circle turns out to give a vanishing contribution to

the total integral.
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Im(p)f
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Figure 1: Possible locations of the Cagniard contour and the branch points in the right half of
the complex p-plane. For case (b) the detour around the branch point has already been made.

Now that we have demonstrated the general applicabilty of the modified Cagniard method
for the inversion of the zero order components, we can use the same method for the inversion of
the first order components. Compared to the zero order case there are two additional complica-
tions. First of all, we have to perform an integration with respect to depth (again we can apply
a Gaussian quadrature rule here), since the first order components are a continuous summation
of partial reflections. These partial reflections, being dependent upon the reflection level, must
first be transformed back to the space-time domain, so the inversion process becomes dependent
upon depth as well. Another complication is the possibility that the leftmost branch point is
also a pole of the inhomogeneity function x(z3) [see eq. (4.6): the first term contains v2(z3) in
its denominator]. If this takes place and if we have a contour as in Fig. 1(b), the detour around

this leftmost singularity gives a nonzero residue contribution to the first order Green’s function.

7. NUMERICAL RESULTS

Finally, we will present some numerical results for a first order upward traveling pressure
wave p(1)~, caused by the continuous reflection of a downgoing zero order wave generated by a

" source of volume injection. This type of reflection has its application in, e.g., seismic research
using the fluid model of the earth. For a configuration with parameter profiles as given in

Fig. 2, the Green’s function has been shown in Fig. 3 for some values of the horizontal offset
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r. The sharp peak in the Green’s function for r = 5000 m has a logarithmic nature and can be
associated with a caustic in the corresponding ray theory. Using a zero order Blackman pulse
with unit amplitude and a duration of 0.1 s as the source signature, the acoustic pressure at the

receiver will be as shown in Fig. 4.
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Figure 2: Parameter profiles used for the numerical example; (a) wave speed profile; (b) mass
density profile. Here, 25 = ¥ = 0 m indicate the source and receiver levels.
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Figure 3: The Green’s function G~ for various values of the horizontal offsets 7.
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Figure 4: The acoustic pressure p(1)~ for various values of the horizontal offsets =. -
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