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Shielding of Wire Segments and Loops in Electric
Circuits by Spherical Shells

DIRK QUAK anp ADRIANUS T. DE HOOP

Abstract—The susceptibility of an electric circuit to electromagnetic
radiation incident on it is analyzed by the application of Lorentz’s
reciprocity relation. An equivalent Thevenin or Norton representation of
the circuit serves to determine the induced signals quantitatively. The
effect of a (multilayered) spherical shield on the performance of
elementary parts of the circuit, viz., a short wire segment and a loop
placed at the center of the shield, is investigated. The corresponding
shielding performance is expressed as the reduction of the induced source
strength in the equivalent networks. Numerical results are presented in a
frequency range that includes the occurrence of internal resonances in the
shielding structure.

I. INTRODUCTION

N THE ANALYSIS of the electromagnetic compatibility of

electric circuits, one of the interferences to be investigated is
the interaction between such a circuit and electromagnetic
radiation incident on it from sources located elsewhere.
Should the degradation of the performance of the circuit
exceed the prescribed immunity level, shielding measures
have to be taken.

In the present paper, we first analyze the susceptibility of an
electric circuit to electromagnetic radiation incident on it by a
proper application of Lorentz’s reciprocity relation. An
arbitrary N-port (for example, a nonshielded part of the
circuit) is separated from the rest of it, the remainder being
regarded as the load of the N-port (a shielded part, for
example). It is shown that the amount of degradation of this
system can be deduced from its equivalent active N-port
network that can be either of the Thevenin (induced voltage
source) or the Norton (induced current source) type, the
accessible ports of which are terminated by the load. The
entire system is assumed to be linear and time-invariant in its
electromagnetic behavior, while all fields are assumed to be
causally related to their sources. In view of this property, the
analysis is carried out in the complex frequency or s-domain (s
is the time Laplace transform parameter).

With the aid of the theory, the effect of shielding to incident
radiation is investigated quantitatively. In particular, we
determine exactly the influence of a multilayered spherical
shield on the performance of the elementary parts in an electric
circuit, viz., a short wire segment and a loop placed at the
center of the shield, each of the layers of which has its own
conductivity, permittivity, and permeability. Our paper is
somewhat complementary to the usual literature on the
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subject, where the influence of shields is mostly expressed by
an equivalent decrease of the incident electromagnetic field at
some point [1]-[3]. Through the use of the reciprocity
theorem, we directly express the influences of the shield in
terms of the source strengths in the equivalent active circuit.
The equivalence of the two concepts is the basis of the
property that the shielding behavior of an enclosure can be
determined not only by direct measurement or calculation of
the interior fields but also by the transmitting properties of an
internal source. The relevant concept has been previously
utilized in EMC and EMI test programs as a ‘‘sniff’’ test, in
which a small transmitter is positioned at various locations
within the enclosure, and its external electromagnetic field is
measured. ' The analysis presented by Michielsen [4] is, in its
point of view, similar to ours; it deviates, however, in the
application of the theory to specific shielding structures. The
paper extends earlier work by Schelkunoff [5] on spherical
shielding structures to the higher frequency range at which his
approximations (that either the shield thickness is large
compared to the skin depth or the radius of the shield is small
compared to the wavelength, or both) no longer hold.

II. Tue FIELD PrROBLEM AND ITS EQUIVALENT NETWORK

For the positioning in space, an orthogonal Cartesian
reference frame with origin 0 and three mutually perpendicu-
lar base vectors {i, i,, i,} of unit length each forming in the
indicated order a right-handed system, is introduced. The
position vector is denoted by r = xi, + yi, + ziand the time
coordinate by t. We present the analysis in the complex
frequency or s-domain, where s is the time Laplace-transform
parameter. The causality condition requires that all s-domain
quantities are regular for complex s in some right halfplane
Re(s) > s,. The complex steady-state representation of
sinusoidally oscillating fields of angular frequency w follows
upon taking s = jw. This corresponds to the complex
exponential time dependence exp ( jwt).

The electromagnetic properties of the media are character-
ized in the s-domain by the conductivity tensor g, the
permittivity tensor €, and the permeability tensor yu, which
may vary with position and depend on s. The representation of
the constitutive parameters by symmetrical tensors of rank two
indicates that anisotropy of the media is taken into account, a
feature that is called for if modern integrated circuits are to be
incorporated in the analysis. For an isotropic medium, the
constitutive parameters reduce to scalars. To simplify the

! For this remark on EMC tests, the authors are indebted to one of the
reviewers.
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notation, we introduce the tensorial specific transverse admit-
tance

n=0+s¢ 1
and the tensorial specific longitudinal impedance
{=su @

of the media. The s-domain electromagnetic field equations
are then given by

CE=-J 3

and
VXE+{ - H=-K. “4)

Here, E denotes the electric field strength, H the magnetic
field strength, J the volume source density of electric current,
and X the volume source density of magnetic current, all in the
s-domain.

The starting point of our analysis is Lorentz’s reciprocity
theorem for a bounded domain D (Appendix A). Further, the
theory is developed along the lines that are in use analyzing, in
telecommunication engineering, the transmitting and receiving
properties of radiating systems (such as antennas) terminating
in networks [6]-[7]. For our case, let the reciprocity theorem
be applied to the domain D that is bounded externally by the
closed surface S’ across which electromagnetic radiation is
incident on the susceptible system and bounded internally by a
surface S* across which the N-port is connected to the load
(Fig. 1). Typically, at S%, the field description is necessary,
while at S;, the port description with voltages and currents
applies (Appendix B). On §‘, field measurements can be
carried out. In between S? and S, no external sources are
assumed to be present, and hence, upon taking the media in
states R and 7 (cf. (B.7) and (B.8)) to be the same, the relation

N
[, o E*xHT-ETXH® dA=Y, (- VEIT+VIIR)

a=1

®

holds. In (5), the superscript T denotes the state in which the
system is in the transmitting situation (all sources of electro-
magnetic fields are contained within S*), and the superscript
R denotes the receiving situation (all sources of electromag-
netic fields are located outside S*). V,, is the voltage across the
a-th port and I, the current flowing through the a-th port into
the load.

In the transmitting situation, let the accessible ports be
excited by feeding the currents IBT (B =1, ---, N)into them.
In view of the linearity of the system, the voltages VT (a = 1,
-+ +, N) across the ports are linearly related to the currents via
either

©

N
Vi=-¥ Z. 415,  (a=1, -+, N)
g=1
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Fig. 1. Electromagnetic multiport system as a receiving system susceptable
to electromagnetic radiation incident across S°. On S, the field description
is used; on S%, the local port description applies. S, is the sphere with
radius A and center at the origin.

where [Z] is the input impedance matrix, or

N
I'Z:_E Yu,ﬁVg’ (a=l7.‘.’N) (7)
g=1

where [Z] is the input admittance matrix of the transmitting N-
port system. These matrices are symmetric and are each
other’s inverse. Note that the transmitting situation applies to
the actual configuration so that [Z] and [Y] depend on the
positioning and shielding properties of the shields.

Next, we consider the electromagnetic N-port system as a
receiving system, susceptible to incident radiation. In general,
the accessible terminals are then connected to an N-port load
(Fig. 1). To relate the receiving situation to the transmitting
one, the total field in it is written as the sum of the incident
field { E', H'} that is emitted by the sources outside S and that
would be the total field if the load were ‘‘absent’’ and the
scattered field {E°, H*®} that is the field that must be
superimposed on the incident field to yield the total field in the
presence of the load. Correspondingly, we have

{E®, HR}={E'+E*, H'+ H*}. ®)
(What ‘“absence’’ of the load actually implies for the descrip-
tion of the receiving system will be elucidated further on.)
From (5), we then obtain

[ v (E+EYxHT-ETx(H+ H*) dA
st

N
=Y (- VRIT+VIIF). (9)

a=1

Now, both {E*, H*} and {ET, HT} are source-free in the
domain exterior to S‘, and both are causally related to the
action of sources located in the bounded domain interior to S'.
Consequently,

~[ v (ExHT-ETxH") da
Sl

|

v (ESXHT-ETXH*)dA (10)

Sa
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where S, is a sphere with radius A and center at the origin of
the chosen coordinate system that completely surrounds S°. In
the limit A — oo, however, the right-hand side of (10)
vanishes. Now, the left-hand side of (10) is independent of A,
and therefore

| v @ xHT-ETH) da=o0. an
sl

Using (11) in (9), we obtain

N
| v EXHT-ETxH) A=Y, (- VEIT+VTIR).

(12)

Next, we express the dependence of E7 and H7 on the way in
which the N accessible ports are fed by writing {E7, HT} =
N {e., h;}I7. By using this and (6) in (12), we arrive at
the Thevenin representation

N
Ve=VRy 2 Za,ﬁlg,

(@=1, -, N) (13
B8=1
in which
ve=—{ v Exh,-e;xH) da,
Sl
(@=1, "+, N). (14)

Equation (13) is representative for an N-port network with
internal voltage sources V¢ (a = 1, ---, N) and an internal
impedance matrix that is the symmetric input impedance
matrix of the same N-port in the transmitting situation. As (13)
shows, ‘‘absence’’ of the load in this description means that
the loaded terminals of the N-port are left open, i.e., Ig =0
for all 8, and hence, V% = V* for all a.

In the same way, we can express that { ET, H7} are linearly
related to the values of the voltages {¥'7} by writing {ET,
HT} = ZN_ {er,h2} VT, By using this and (7) in (12), we
arrive at the Norton representation

R
Il
M=

I YagVE+IR,  (a=1,--,N) (15
8=1
in which
15={ v E'xBI—elxHYdA,  (a=1,-, N).
sl
(16)

Equation (16) is representative for an N-port network with
internal current sources I¢ (@ = 1, ---, N) and an internal
admittance matrix that is the symmetric input admittance
matrix of the same N-port in the transmitting situation. As (15)
shows, ‘‘absence’’ of the load in this description means that
the loaded terminals of the N-port are short-circuited, i.e., Vg
= 0 for all 8, and hence, IR = I¢ for all a.

For a one-port system, the Thevenin and the Norton
representations are shown in Fig. 2.
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(a) Thevenin representation and (b) Norton representation of an
electromagnetic one-port system in the receiving situation.

Fig. 2.

III. THE INFLUENCE OF SPHERICAL SHIELDS ON THE
SuscepTIBILITY OF WIRE SEGMENTS AND WIRE Looprs
PrLACED IN ITs CENTER

To analyze the influence of a shielding structure, one can
adopt two points of view. The first, and most common, is that
S’ is taken interior to the shielding structure, which implies
that in the right-hand sides of (14) or (16), the values of {E’,
H'} change (and hopefully reduce), while the values of
{el, h.} or {e”, h”}, respectively, remain the same. The
second is that S’ is taken exterior to the shielding structure,
which implies that in the right-hand sides of (14) or (16), the
values of { E’, H'} remain the same, while the values of {e,
h!} or {er’, h!}, respectively, change (and hope-
fully reduce). This equivalence is the basis of the ““sniff”’ test
mentioned in the Introduction. As will be illustrated below,
{E7, H"} and thus the related {e/, £ } or {e, h [}, are in
many cases much easier to calculate (they are only related to
the circuit under investigation) than {E’, H'}, since the latter
are related to, in many cases unknown, sources located
elsewhere. This is why we base our analysis on the latter point
of view.

One of the shielding problems that can be solved by rather
elementary means (and has also been considered by
Schelkunoff [S]) is the one pertaining to multilayered spherical
shields with a short wire segment or a small loop placed at its
center in case this whole structure is embedded in a homogene-
ous, isotropic medium. In view of (14) or (16), we then need
the fields {E7, HT} transmitted by such a wire segment or a
loop, carrying a uniform current I7. Let o, ¢, and p be the
scalar conductivity, permittivity, and permeability, respec-
tively, of the embedding medium; then, {E7, HT} are, in
general, given by

ET= —¢A+n"'Y(V - A)-YXF an

and
H™= —nF+§7'V( -

F)+YxA (18)

where {A, F} are the vector potentials of the source
distributions of the transmitting system.
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For a short, straight segment of conducting wire of vectorial
length L carrying the uniform current I7 placed at the center of
the coordinate system and radiating into the infinite medium,
we have

A=I"L exp (—vy|z))/4x|r]  F=0 19

where v = (9¢)"? with Re(y) > 0 when Re(s) > 0 is the
medium’s propagation coefficient, and r denotes the point of
observation.

To analyze the shielding efficiency of a spherical shield
around this transmitter, we can writt A = ITLU. In the
absence of the shield, A depends on r only through the
omnidirectional scalar spherical wave function U, which
corresponds to a wave diverging from the center r = 0 and
satisfies the modified Helmholtz equation V-VU — y*U =
—6(r), where &(r) is the three-dimensional unit impulse acting
at r = 0. It is now anticipated that in the presence of the
shield, the directional structure of A remains the same, while
only the radial one changes due to successive reflections and
transmissions in the layers. In the ball interior to the shield, an
omnidirectional standing wave that is bounded at r = 0 is
superimposed upon the wave diverging from the source. In the
spherical shells, the wave field is a superposition of omnidi-
rectional diverging and converging waves. In the domain
outside the shield, the wave function remains a diverging
omnidirectional spherical wave albeit with a different ampli-
tude. All these spherical waves are solutions to the radial
transmission-line equations and show pertinent corresponding
radial spherical wave impedances.

The configuration that we consider consists of a domain D,
for which 0 < |r| < ry, interior to the shield (i.e., the domain
where the radiating element is situated), the shielding domain
consisting of (ND — 2) different concentric, spherical shells
Dy, forwhich ryy_; < |r| < ryy(M = 2, -+, ND — 1), and
the domain Dyp, for which ryp_; < |r| < o, exterior to the
shield (Fig. 3). The total number of domains in
the configuration is ND. In each subdomain D), a homogene-
ous, isotropic medium is present with transverse admittance
per length na, = op + Sep and longitudinal impedance per
length ¢,y = suar, while the propagation coefficient is vy =
(mmém)'? with Re(vyas) > 0if Re(s) > 0. The representation
of the scalar wave function U = U(|r|) in the domain D, is
written as

Un e +CXP[—‘YM(|£|"M-1)]
M ax|r|
_exp [—ymlrn—|r])]

M 4x|r|

when ry 1 <|r|<ry, (M=1, ---, ND). (20)

In (20), U}, and U, are constant coefficients. Each term on
the right-hand side of (20) satisfies the source-free modified
Helmholtz equation as long as |7| # 0. The constant parts in
the arguments of the exponential functions have been included
to avoid the loss of significant figures in the numerical
handling of the expressions in case +yy, gets large. In Dy, the
wave function that must be superimposed on the diverging one
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"ND-2

Fig. 3. Spherical configuration, consisting of (ND — 2) shells D), for which

Iy < |r| < rywithM =2, .-, ND — 1.

to account for the presence of the shield must be bounded at
|r| = 0. This is accomplished by taking

_exp (—mirl)
4z|r|

sinh (y;|r])
4r|r|

when 0< |r|<ry

UI +2R exp(—'ylrl)

@n

soU} =1 — Rexp (—v,r) and U = R. In Dyp, the
wave function must remain bounded as |r| — oo, and hence,
the term containing exp (ynp|r|)/4w|r| must be missing.
Accordingly, we take

exp [—ynp(|r| = rvp-1)]

Unp=T
e 4|r|

when ryp_ 1 <|r|<e (22)

soUfp = T, and Uy, = 0. Note that (20)-(22) describe the
shielding problem as a reflection, transmission, and attenua-
tion process in which R is the overall reflection coefficient in
the interior domain, T the overall transmission coefficient in
the exterior domain, and the exponential functions in (20)
describe the attenuation that takes place in the interior of the
shells. The relationships between the coefficients {U,,, U} }
with M = 1, - -+, ND follow from the boundary conditions at
the interfaces |r| = rywith M = 1, ---, ND — 1, which
require the continuity of the tangential components of the
electric and magnetic field strengths. Using (19) in (17)-(18),
the field strengths for the radiating wire segment are found as

ET=(={U+n'r|7 19, UL
+q7 (=] 719 U+3,9 U)E(E - ITL) (23)
and

HT=(x17Ld) U @4)

where £ = r/|r| is the unit vector in the radial direction. We
observe that the second term on the right-hand side of (23)
points along £; i.e., it has no component tangential to the
interfaces. Therefore, the tangential components of the elec-
tric and magnetic field strengths are made continuous across
an interface if we make —({U+77'[r|~'3;4U and 9)U
continuous across that interface. The relationships between
{Up Ui s Uy s Uy 3, withM =1, -+, ND — 1, can
be grouped together in the form of a scattering matrix denoted

by [Ss,m+1 and defined by

Ut U
[ JM‘] =[STa,pe1 [

M+1
Uy

In the scattering matrices, the reflection and transmission

(25
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coefficients for radial spherical waves at each interface occur.
The relevant expressions are somewhat lengthy and will not be
given here.

For the multilayered shield, the overall scattering matrix
[S]i,~p can formally be written as

[Shno=[Sli2 *[S]z3 * -+« * [SInp-2,8D-1

* [SInp-1,np  (26)

in which * denotes the so-called Redheffer star product of
matrices that has been introduced in [8]. From (25) and (26),
we obtain

T 0
[R]—[S]I,ND [1__R exp(_'erl)] . (27)

To characterize the overall performance of the shield, the
shielding effectiveness S is introduced, which is the ratio of
the field strength at a point before and after the placement of
the shield. The insertion of a shield around a circuit entails that
the relation y; = ynp holds. So, for any point |r| > ryp_;,
we have (cf. (22))

S=T""'exp (—ynpNp-1)- (28)

From (13)-(16), it is evident that the induced source strengths
in the Thevenin or Norton representation of the susceptible
circuit are modified by the shielding by the same factor S.
For a small loop with vectorial area AR carrying the
uniform current I7 placed at the origin of the coordinate
system and radiating into the infinite medium, we have

A=0  F={I"AR exp (—v(r|)/4x(r] (29

where r denotes the point of observation. The analysis of the
shielding efficiency of a spherical shield with the loop at its
center runs along the same lines as the one for the wire
segment. We write F = {ITAR V, where V replaces the
function U in the analysis of the wire segment. Using (29) in
(17)-(18), the field strengths for the radiating loop are found
as

ET=—£x(ITARD,\V (30

and
HT=(=nV+{'r] 13, V)EITAR
+EN(= 12|70 V43,9 VIE(E - TITAR). (31)

In (31), the second term on the right-hand side points along
£, i.e., it has no component tangential to the interfaces.
Therefore, the tangential components of the electric and
magnetic field strength for the radiating loop are made
continuous across an interface if we make {9,V and — gV
+ |r|='8y, V continuous across that interface. Again, the
coefficients that define ¥ in the shells can be grouped in a
matrix form as (25).

IV. NuMericaL REsuLTs AND CONCLUSION

On the basis of the analysis in the previous sections, a
computer program has been written that yields the shielding
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effectivenesses for a configuration consisting of a wire
segment or a loop with a spherical shield around it. The shield
may be multilayered; each layer may be composed of any kind
of linear, isotropic material. When the calculations are
performed on the basis of the scattering matrix formalism,
they proceed without difficulty in the frequency regions in
which we are interested and which are shown in the figures.

In Figs. 4, 5, and 6, the effect of a single shield around a
wire segment or a loop is shown. In the frequency range used,
two effects intermingle, i.e., the shielding effect of the
conducting shield in its dependence on the ratio (skin depth)/
(free-space wavelength) and the effect of resonances in
dependence on the ratio (shield-radius)/(free-space wave-
length). In Fig. 4, the shielding effectiveness of a conducting
shield for a wire segment is presented as a function of
normalized frequency ri/\, in which A is the free-space
wavelength. The shield consists of a single layer of copper (o
= 5.65 * 107/Q-m) with thicknesses of 1 * 10~ m, 3 % 106
m, and § * 10~ ¢ m, respectively, whereas the inner radius of
the shield is 5 * 10~2 m. From the figure, it is clear that the
conducting shield forms an effective one for the wire segment.
In the very-low-frequency region, the wire is perfectly
shielded, even electrostatically. At the resonant frequencies of
the spherical cavity, severe dips occur in the shielding
effectiveness. In the low-frequency region, where 27r /A < 1
holds, approximations to the wave impedances of the radial
spherical waves and the radial spherical wave interface
reflection and transmission coefficients can be made, after
which the results reduce to the ones obtained by Schelkunoff
[5]. In the figures, the frequency range considered exceeds the
validity of these low-frequency approximations.

Fig. 5 shows that in accordance with that which has been
found in [2], even near the resonant frequencies of the spherical
structure, the shielding effectiveness is considerable, provided
that the thickness of the shield exceeds the skin depth. When
the quality factor of our numerically obtained resonance
behavior for a shield thickness of several skin depths is
compared with the one obtained by Schelkunoff [5] by
equating the surface impedance of the sphere to the intrinsic
impedance of a good conductor, they are in complete
accordance.

In Fig. 6, the shielding effectiveness of the same configura-
tion is presented, except now it is presented for a loop. The
most significant difference with the shielding of the wire
segment is the minimal shielding of a loop by a conducting
shield at low frequencies. This is to be expected since, for the
loop, the magnetic field is predominant at these frequencies,
and this field penetrates across a conducting shield. The
resonant frequencies for the loop differ from those for the wire
segment.

For shields around a wire or a loop whose thickness is larger
than several skin depths (in Figs. 4 and 6, curves (b) and (¢),
the mark in the curves indicates the point at which the skin
depth equals the thickness of the shield), the position of the
resonance frequencies of a spherical enclosure around the wire
or the loop placed at its center and the exponential attenuation
of the wave transversing it are in accordance with earlier
investigations by Schelkunoff [S]. For the thinner shields
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WIRE SEGMENT IN SPHERICAL SHIELD
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Fig. 4. Shielding effectiveness of a spherical shield for a wire segment at its
center (copper shield placed in air (vacuum): inner radius shield = 5.0 *
10-2 m, conductivity shield = 5.65 * 107/Q-m). The mark indicates where
the thickness of the shield equals the skin depth.
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Fig. 5. Shielding effectiveness of a spherical shield for a wire segment at its

center at the first resonance frequency (copper shield placed in air
(vacuum): inner radius shield = 5.0 * 10~2 m, conductivity shield = 5.65
* 107/Q-m).
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Fig. 6. Shielding effectiveness of a spherical shield for a loop at its center

(copper shield placed in air (vacuum): inner radius shield = 5.0 * 10~ 2 m,
conductivity shield = 5.65 * 107/Q-m). The mark indicates where the
thickness of the shield equals the skin depth.

(Figs. 4 and 6, curve (a)), the increase of shielding effective-
ness with frequency is much more modest, as is to be
expected. In the entire frequency range shown in Figs. 4, 5,
and 6, the condition for a ‘‘good conductor’’ applies to the
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Fig. 7. Shielding effectiveness of a shield consisting of two separate

concentric spherical shells for a loop at its center (copper shells placed in air
(vacuum): inner radius inner shell = 5.0 * 10~2 m, inner radius outer shell
= 12.0 * 1072 m, conductivity of both shells = 5.65 * 107/Q-m).
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Fig. 8. Shielding effectiveness of a multilayered spherical shield with a loop
at its center (conducting and magnetic shell placed in air (vacuum): inner
radius conducting shell = 5.0 * 10~2 m, inner radius magnetic shell =
outer radius copper shell, thickness magnetic shell = 4.0 * 1073 m,
conductivity copper shell = 5.65 * 107/Q-m, relative permeability
magnetic shell = 1000).

shields, i.e., the electric displacement current is negligible
with respect to the conduction current (2mfey/o is at most
10-8).

The result of the application of two separate conducting
shells around a loop is shown in Fig. 7. The overall shielding
effectiveness increases, as expected, whereas the introduction
of new resonant frequencies is the immediate consequence of
the presence of the second shell with a different radius. Figs. 8
and 9 show the shielding effectiveness for a loop in a
multilayered shield consisting of a conducting shell with
thicknesses 1 * 107 m, 3 * 107® m, and 5 * 107 m,
respectively and a magnetic shell with a thickness of 4 * 1073
m. In Fig. 8, the conducting shell is located inside the
magnetic shell, where as in Fig. 9, the magnetic shell is
located inside the conducting shell. The shielding effectiveness
of the combination in Fig. 9 is somewhat higher in the
frequency range, where 27r;/\ < 1 holds, than is the one in
Fig. 8 (cf. [3]).

The use of the scattering matrix formalism leads in the very-
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Fig. 9. Shielding effectiveness of a multilayered spherical shield with a loop
at its center (magnetic and conducting shell placed in air (vacuum): inner
radius magnetic shell = 5.0 * 10~2 m, inner radius conducting shell = 5.4
* 1072 m, relative permeability magnetic shell = 1000, conductivity
copper shell = 5.65 * 107/Q-m).

low-frequency region to a loss in significant figures. In this
region, an alternative representation for the wave functions is
to be used that expresses their standing-wave behavior in the
bounded subdomains, rather than the propagating wave
description used in (20) and (25). Such a behavior is expressed
via a relation of the type

cosh [ya(jr| —rar-1)]

UM‘—'UC

M 4r|r|
. sinh [yp(|7] = ras-1)]
M 4rlr|
when ry_ < |r|<ry, (M=1, -+, ND-1),
(32)

that replaces (20). In (32), U, and U3, are constant
coefficients. The relation between the coefficients in these
representations follow again from the application of the
pertaining boundary conditions. From the representations,
(21), (22), and (32) again follow T and R and hence, follow
with (28) the shielding effectiveness.

The paper illustrates the usefulness of the Lorentz’s
reciprocity relation as a starting point for analyzing shielding
configurations as to their effectiveness. It puts the ‘‘sniff’” test
for EMC and EMI test programs on a rigorous mathematical
basis. Further, it develops a numerically stable scheme that
can handle, in a recursive manner, an arbitrary number of
concentric spherical shells for an arbitrary frequency range.
The results show, albeit for a specific model geometry, what
type of behavior can be expected for the shielding effective-
ness of laminated shields in dependence on their physical
properties and dimensions.

APPENDIX A
Tue REciPrOCITY THEOREM

We consider a time-invariant, bounded domain D in space
in which two nonidentical electromagnetic states can occur.
The two states will be distinguished by the superscripts 7" and
R, respectively [9]. Neither the source distributions of the
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electromagnetic fields in the two states nor the media present
in the two states need be the same. The boundary surface of D
is denoted by dD; the unit vector v along the normal to 3D is
directed away from D. From (3) and (4), it follows immedi-
ately that the relation

V- (EfXHT-E"XHF)
=HR . (S.T_SR) . HT
..ER . (,'lT_nR) . ET_KR . HT

_!T. ER+KT. HR+!R . ET (Al)

holds. Equation (Al) is the local form of the Lorentz’s
reciprocity theorem. Integration of (Al) over the domain D
and the use of Gauss’ theorem in the resulting left-hand side
lead to

| v @R xHT-ETxH") dA

aD —

=S [HR . (§‘T—§‘R) . !'IT—ER . (HT”QR) . ET] dv
D = =
+§ (JR-ET—KR- HT-JT .- ER+KT - HR) dV.
D

(A2)

Equation (A2) is Lorentz’s reciprocity theorem in its global
form for the domain D.

In case the reciprocity theorem has to be applied to an
unbounded domain with nonvanishing sources in a bounded
subdomain only, the case will be handled as the limiting case
that occurs if D is taken to be the domain interior to a sphere
S, of radius A and center at the origin, and the limit A = oo is
considered. The surface integral at the left-hand side of (A.2)
that now has to be evaluated over S, vanishes, since the field
quantities occurring in the integrand show, due to causality, an
exponential decay when Re(s) > 0 and [r| = o.

APPENDIX B
THE INTERACTION OVER A LocAL MULTIPORT SYSTEM

In the neighborhood of local terminations, the electric field
E can approximately be expressed in terms of a scalar potential
$ = & (r, s) through the relation

E= V6. (BI)

The terminals themselves are assumed to be perfectly conduct-
ing, which implies that on them, the scalar electric potential
has a constant value. Let S’ denote a closed surface that
surrounds the multiport system and thus excludes the domain
of the multiport termination from the right-hand side of (A2).
Then, we have (see Fig. 1)

[ v @ xEmaa=-{

-l

+f  ery - (TxHT) da.
SL

- (V@RXHT) dA

153

- UX(®RHT) dA

<

(B2)
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However, on account of Stokes’ theorem, we have

J,. v vx@rET) da=o, 83)
since S’ is a closed surface, and ®* H” has been assumed to
be continuous on SL. Further,

SSL <I>Ry . (YXHT) dA:gSL ‘I>R! . 1lT . ETdA. (B4)

Now, in the local approximation, 7+ ET on S* is predomi-
nantly concentrated in the conduction current in the conductors
joining the accessible ports with the remainder of the system.
Let A, be the cross-section of the a-th conductor (¢ = 1, - -,
N). Then

n

N
LLqm!. nT - ETdA g La ®Ry - JT dA

VRIT

a o

(BS)

M=

a
where V,, is the constant potential of the a-th conductor and

1a=§ v - JdA (B6)
A

o

is the conduction current flowing through the a-th conductor
into (note the orientation of v on S) the domain where the
multiport transmitting system or load is located. In the local
approximation, the left-hand side of (A2) therefore reduces to

N
| v E*xHT-ETxH™ da= 3 (VRIT-VTI®),

a=1

B7)

If in D no sources are present while the media in D in state T
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and in state R are the same reciprocal ones, it follows
immediately from (A2) that the relation

| v @*xHT-ETxH") da
Sl
= v+ E*HT-ETxH?) dA (@)
S

holds. With (B7) and (B8), the connection between the field
description on S/ and the local description in voltages and
currents on S* is made.
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