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SUMMARY

A version of Cagniard’s technique for inverting integral transforms is adapted to diffusion
problems and illustrated with the 2-D example of two semi-infinite media of different [
electrical conductivity excited by a transient line-source of electric current at their interface.
The field equations are first solved in the transform domain, i.e. following a Laplace
transformation with respect to time (with real, positive transform parameter) and a Fourier
transformation with respect to the spatial coordinate parallel to the interface. Deformation of
the path of integration for the inverse Fourier transformation allows the inverse Laplace
transformation to be obtained by inspection. The electromagnetic field at any point in the
configuration can then be obtained by numerical evaluation of well-behaved integrals. In the
more diffusive half-space, there is a single integral to be evaluated, whereas in the less
diffusive domain, there are two: one corresponding to the direct ‘wave’, the other to a
diffusive ‘head wave’ which develops along the interface and influences certain regions of

space—time.
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1 INTRODUCTION

Insight into the behaviour of transient electromagnetic fields
in conductive structures is important when interpreting data
acquired in electromagnetic exploration for minerals or
groundwater. For complex structures, only numerical
methods—such as the finite-difference method (Oristaglio &
Hohmann 1984; Goldman & Stoyer 1983) or finite-element
method (Kuo & Cho 1980)—have sufficient flexibility to give
quantitative results for the field values. But for simple
structures, like plane-layered models, analytical results can
be obtained that, apart from serving to check numerical
results, can have considerable interest of their own. An
example is the ‘smoke-ring’ model introduced by Nabighian
(1979), which provides a simple, intuitive picture of the
transient currents induced in a half-space by a current loop
source at the surface.

The present paper develops an analytical method for
transient electromagnetic diffusion through plane-layered
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media. The method employs ideas that have been
successfully used to study the propagation of impulsive
waves in layered media, where it is called the ‘modified
Cagniard’ or ‘Cagniard—de Hoop’ technique (de Hoop 1960,
1961, 1979; de Hoop & van der Hijden 1983, 1984; see also
Achenbach 1973; Aki & Richards 1980). The method is
illustrated for a two-media configuration with a plane
boundary, where each medium is characterized by a
constant conductivity and a constant permeability. An
impulsive line current is located at the boundary and
generates a 2-D diffusive electromagnetic field. Recently,
such a model has been used to study the behaviour of
underwater transient electromagnetic systems for mapping
sea-floor conductivity (Edwards & Cheesman 1987). It has
also been used to study the propagation of electromagnetic
signals generated by cables lying on the sea-floor (see Inan,
Fraser-Smith & Villard 1986 for a recent discussion of this
work, which has concentrated on the frequency response of
the model). Our main purpose here is to use the model as a
canonical example of Cagniard’s method applied to transient
diffusion problems. Of particular interest is the physical
insight provided by this method: at each point in the
configuration, the transient field is decomposed exactly into
physically meaningful parts, each of which is given by a
simple, well-behaved integral.
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Dx —oo<z<0
Conductivity oy
Permeability p,

Diffusion coefficient D; = (ayp1) 7"

Line source

-

z

Dy 0<z<oo
Conductivity o3
Permeability u,

Diffusion coefficient Dy = (oap2) 7"

Figure 1. Geometry of the problem.

2 DESCRIPTION OF THE
CONFIGURATION

We consider the transient electromagnetic fields in a
medium with a plane interface separating two half-spaces
(Fig. 1). Each half-space is homogeneous and isotropic; with
constant conductivity o and permeability u. We assume that
displacement currents contribute negligibly to the electro-
magnetic field and thus ignore the permittivity € of each
medium. Position in the configuration is specified by
coordinates (x, y, z) with respect to a Cartesian reference
frame. The z-axis is normal to the interface, while the y-axis
is directed along the line current, i.e. perpendicular to the
2-D cross-section shown in Fig. 1. The strength of the line
current is assumed to be independent of y, giving a purely
2-D problem. Other properties of the configuration are
summarized in the figure.

The time coordinate is denoted by . It is assumed that the
source starts to act at t=0 and that, prior to this, the
electromagnetic field is zero everywhere. In actual transient
measurements (see e.g. McCracken, Oristaglio & Hohmann
1986), the current is usually switched off at +=0 and one
observes the decay of the field from its steady-state value.
This case can be obtained from our analysis simply by
subtracting the results from the steady—state value of the
field components.

3 FIELD EQUATIONS

In a homogeneous, isotropic domain, the 2-D electromag-
netic field that can be generated by a line-source current
with volume density ¥ = (0, J,,, 0) consists of an electric field
with components E= (0, E,, 0) and a magnetic field with
components H= (H,, 0, H,). In the diffusive approximation
(i.e. neglecting displacement currents), the field is governed
by the following partial differential equations: ‘

—3,H, + 3,H, — oE, =J,, 1)
8,E, + ud,H, =0, o)
—8,E, + ud,H, =0. 3)

The electric current source is now taken to be a line
current located at x =0, z = 0; thus, J, = I(t)6(x, z), where

I(t) is the current in the source and 6(x, z) is the 2-D
(spatial) delta function. The action of the source can be
accounted for by the following boundary conditions, which
follow from integrating (1) and (3) over an arbitrarily small
interval around z =0 and using the properties of the delta
function,

lim H, —lim H, = I(t)6(x) €))
z]0 zTo
lzi?(} E, - 121%1(} E, =0, (%)

where z |0 and z10 indicate one-sided limits as z approaches
0 from positive and negative values, respectively.

4 METHOD OF SOLUTION

4.1 Transform domain

In our method of solution, we first calculate the field
quantities in the ‘transform’ domain. To this end, we carry
out a one-sided Laplace transformation with respect to time
with real, positive transform parameter s (this is, in fact, the
easiest way to take into account causality). We then perform
a Fourier transformation with respect to x, the coordinate
parallel to the boundary, with transform parameter s'’a.
This choice of transform parameter for the Fourier
transformation is designed to facilitate the transformation
back to the space—time domain by the modified Cagniard
method. To show the notation, we write down the relevant
transformations for the electric field:

B, 2, 5) = f “exp (=sDE, (x, z, f) di, ©)
E(x z,5)= Jm exp (is?ax)E, (x, z, 5) dx. @)

Using Fourier’s inversion theorem, we also have
E (x,z,5)= s1’2/2nf_ exp (—is"?ax)E, (a, z, 5) da, (8)

0

where we have taken into account that the transform
parameter is s"?a.

Application of these transformations to the field equations
(1)-(3) leads to the following transform-domain equations,
which include the initial conditions and continuity of the
field quantities as a function of x and hold when z # 0:

is"?«H, + 3,H, — oE, =0, 9)
—is"E,, + spH, =0, (10)
—82Ey +suH, =0. (0]
Elimination of H, from this system gives the equations
8,H,=p"Y(o?+ D NHE,, (12)
azEy = suH,, (13)
where

D=1/op (14)

is the diffusion coefficient. Furthermore, the boundary




conditions in the transform domain become

lim A, — lim A, =1, (15)
z|0 z10 ’
Iziil(} E, - lzi?g E, =0, (16)

where [ is the Laplace transform of the source current.

In what follows, we distinguish the field quantities in the
two half-spaces by the superscripts (1) for the upper
half-space and (2) for the lower half-space. From equations
(12) and (13), it follows that the solution in the upper
half-space that is bounded as z— — is

ED = —s"*[A; exp (s1,2), (1)
AD = —(r/u)IA; exp ("27,2), (1%
where

y1=(a?+ D7) >0, | (49

In the lower half-space, the solution that is bounded as
z—> s

EP = —s'2JA, exp (—s"?y,2), (20
I:I;(cz) = (Yz/liz)iAz exp (—s'%y,2), " (21)
where

¥2=(a?+ D320, ‘ (22)

The constants A, and A, are obtained by imposing the
boundary conditions (15) and (16); we find

_ 1 _ Hilbo
= =
Y/t Vo thy  poYi Y2

Note that A does not depend on the Laplace transform
parameter s.

This completes the solution of the relevant equations in
the transform domain. Subsequent sections describe the
transformation back to the space—time domain using the
modified Cagniard method and are followed by numerical
examples.

A=

=A. (23)

4.2 Back to the space—time domain

To return to the space—time domain, we must invert the
Laplace and Fourier transformations that were used to
obtain equations (17)—(23). Symbolically, we can write for a
typical field component, for example, ESV,

EP(x, z, 1)y = L H{F HEM(a, z, 5)}}, (24)

where ¥~ '{ } and % '{} indicate, respectively, the
inverse Laplace and Fourier transformations of the
quantities in braces. .

The essence of the modified Cagniard method for
obtaining space-time results from the two inverse
transformations is to deform the path of integration of the
inverse Fourier transformation in the complex plane until
the integral resembles the forward Laplace transformation
of a well-behaved function, with a real, positive ‘time’
parameter defined along the path. In problems of 2-D wave
propagation, the inverse Laplace and Fourier transforma-
tions cancel perfectly after the contour deformation,
yielding algebraic expressions for the simplest time
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response. In a 3-D problem, a single finite-range integral
remains after cancellation of the inverse transformations.
We follow a similar procedure for inverting the transforma-
tions in the diffusion problem. The main difference between
the diffusion and wave problems is that, in a 2-D diffusion
problem, a single integral remains to be evaluated even for
the simplest time response.

We illustrate this procedure by considering in detail the
solution for the field component E,. We shall assume that
o, < o,, and, hence D, >D,. The case of vanishing
conductivity (air over a conducting half-space) follows by
taking the limit as the conductivity goes to zero through
positive values. We compute the solution for a (unit)
step-function current source, so that

I=1/s. (29)

Consider first the expression for the field in the more
diffusive domain %;. On comparing (8), (17) and (25), we
obtain for the inverse Fourier transformation in (24),

o0

exp [—s"2(iax + v, |z])]A(a) da,

(26)
in which A is given by (23). Note that we are not using a
special symbol to indicate that E{(x,z,s5) is the
step-response of the system; furthermore, in the expressions
that follow, we will omit the arguments of this function and
write E in place of E{(x, z, 5).
The first step in the evaluation of 133;1) is to introduce p as
the variable of integration, by the substitution p =iax.
Equation (26) becomes

N 1
E® Lz, 8)=——
5 (X, z, 5) )

) 1 = o
B = [ el xt DA, @)

where the bar over a symbol indicates the relevant
replacement. For example,

71= (D7 —pH"” (28)
Next, the integrand in the above equation is continued
analytically into the complex p-plane, with the aim of
deforming the path of integration in (27) into a path where
px+7:lzl =k, (29)
with k real and positive. In this process, we keep both
Re (1) >0 and Re (¥,)>0. To do this, branch cuts are
introduced along
Im (p)=0

Im(p)=0

DT < |Re(p){<w», and
D32 <|Re(p)| <.

In the cut p-plane, the integrand is then single-valued and
free from singularities. It is also real-valued when

Im(p)=0 —Df1/2<Re (p)<D1_1/2.

With the above conditions, Schwarz’s reflection principle
applies to the integrand which thus takes on complex
conjugate values at conjugate complex points in the p-plane.

In wave-propagation problems, the paths in the complex
plane that satisfy (29) as continuous deformations of the
imaginary p-axis are called ‘modified Cagniard’ paths.
Solving for p in this equation, we find that the appropriate
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path is given by two complex conjugate branches (Fig. 2),
p =p; and p = p¥, where

x
P1=K,3+i(K2_K%)1/2? with  x; <k <e, (30)
in which
r=@x*+29)", : (31)
= r/DV”. (32)

The hyperbolic path composed of p=p, and p=p} is
symmetric with respect to the real p-axis. It crosses the axis
at p =x/rD}?* when k =K, i.e. between the branch points
—~D}”? and +D7? (Fig. 2).

When the original integration path along the imaginary
p-axis is joined to the modified Cagniard path with circular
arcs at infinity, the contribution to the integral from the
circular arcs vanishes (Jordan’s lemma) because

|A exp (=5"27,|z)| >0 as p—o

(recall that s is real and positive and the real part of ¥, was
kept positive by the choice of branch cuts). By Cauchy’s
theorem, the expression for £{" can thus be rewritten as

A 1 -
EM=—— f exp (—s'*k) Im (A3, p,) dx. (33)
7

K1

In (33), x has been introduced as the variable of integration
using (30). Moreover, the property that both s and x are
real has been used, along with the fact that the integrand
has complex-conjugate values along the paths p =p, and
p =pi. The integration along the conjugate paths can thus
be combined into the single integral (33). Along the path of

Im(p)
AN

‘D2—1/2 _D;1/2 Dl—1/2 D;1/2

VAV,
Y ’ YRR > Re(p)

Figure 2. Modified Cagniard path in the complex p-plane for
calculating the response in the more diffusive domain %;. p, and p#
are the complex conjugate limbs of the hyperbolic path. The path
crosses the real p-axis at a point between the branch cuts originating
at £D712,

integration in (33), we have

. lzl .

X .
y1=1<72——-t(K2~—K%)1/2;5 with K, <x <o, (34

while the Jacobian 3, p, is given by
2
GK P1 = m . (35 )
With these substitutions, the inverse Fourier transforma-

tion is now in a form where the Laplace inversion integral in
(24) can be moved inside the x integral. We observe that

exp (—s'?k) is the Laplace transform of the causal time
function

K
G(t, K) =H(t)WeXp (—K2/4t), (36)

where H(t) is the Heaviside step-function and x >0. The
final space—time expression for E$"(x, z, t) is then

1 ]
(2, 0= =~ f G(t, ) Im (A8, p,) dx. @37)
K1

4.3 Diffusive head waves

The solution for the electric field E$? in the less diffusive
domain %, follows closely the derivation in the previous
section on replacing ¥#; by %, in (27). In this domain,
however, a new phenomenon arises. The modified Cagniard
path along which the final integration is taken can intersect a
branch cut on the real p-axis. The appropriate loop integral
around the branch cut, which must be added to keep the
integrand single-valued, adds a diffusive ‘head-wave’
contribution to the field in certain regions of space—time.
These regions depend on the distance of the receiver from
the source and on the contrast in material properties across
the interface.

We start with the inverse Fourier integral for £®, after
the substitution p =i,

foo

A 1 _ -

EP=——| exp[=s"(px + 722)|A(p) dp, (38)
where

72= (D7 =p)", (39)

and the absolute value signs on z have been dropped since
z>0in 9,. In the region of observation

0= |x|/r = (D,/Dy)"?, (40)

the appropriate modified Cagniard path consists of p =p,
and p =p3, where

p2=1<-)%+i(1c2—1<§)1’2r£2 with Kk, <k <, (41)
r

and

K, =r/DY¥?, (42)

The hyperbolic path composed of p = p, and p = p5 is again
symmetric with respect to the real p-axis and crosses the axis
at p =x/rDY? when k =k,. In the region of observation
(40), the point of intersection of the new path and the real




p-axis still lies between the branch points —D3? and +D12,
The path deformation is thus complete and the final
space—time expression for E$> in this region is simply

1 ]
EPG 2, 0= - L Gl 1) Im (A0, py) de (43)

The diffusive head wave occurs in the region of
observation

(D,/D) P =x|/r=1. (44)

Since the electric field is symmetric in x, we need only
consider the region with x positive

(D,/D))"*=x/r=1. (45)

Here, the modified Cagniard path composed of p =p, and
p =p3 (41) intersects the real p-axis at a point along the
branch cut associated with %, (Fig. 3) and must be
supplemented by a loop integral around the branch cut.
Along this loop, too, we maintain the condition

px +7;lz| =K, (46)

with x real and positive. The values of p that follow from
(46) when considered along the loop are denoted as p =p, ,
and p =pj3 ,, where

X z .
p2,1=1<;5—(1<§—~r<2)1/2;§+i0 with x,; <K<k, (47)

and
X _ -
K2,1=Z)—1/—2+ (D;'=DiH %z (48)
1
Im({p)
A

P2

Figure 3. Modified Cagniard path in the complex p-plane for
calculating the response in the less diffusive domain @, in the region
where the diffusive head wave is present. The hyperbolic path
composed of p, and p3 intersects the real p-axis at a point between
the branch cuts originating at D7Y* and D;'? and must be
supplemented by a loop around the branch cut (the paths p, ; and

P31
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Along p =p, 4, we also have

i z x
Pa=xg+ (Kg“KZ)w;z- (49)
and
¥
OP21= W (50)

The final space—time expression for E$ in this region is the
sum of the contributions from the loop integral (the diffusive
head wave) and the hyperbolic path (the direct wave),
Kp ~

G(t, x)Im (A3, p, 1) dx

K2,1

1
E(Z) , ,t R
5 (X, 2, 1) p

‘;1, L jG(t, ) Im (A8, p,) dx. (51)

The diffusive head-wave field in (51) is similar to the
lateral-wave field that King (1985) identified in the harmonic
response of the two-half-space model to an electric dipole
source. He made this interpretation after carefully deriving
an approximate formula for the field from an exact integral
expression. The decomposition of the transient field of the
line source given by (51) involves no approximations.

5 MAGNETIC FIELDS

The magnetic fields in the two half-spaces follow directly .
from (18), (21) and contour deformations similar to those
described above. We will just quote the results here. For the
magnetic field in the more diffusive domain %,, we have

1™ -
HOw 2,0 == [ F@ 0 (Ao p)dx, ()
K1

1 -
Hgl)(x: z,8)= _;f F(f, x) Im (Pl”l_lAaxpl) dx, (53)
K1
where F(t, k) is the causal time function

F(t, 1) = H(D) th)ﬁ exp (—K2/40), (54)

and where the integration is over the modified Cagniard
path described by (30). In deriving these expressions, we
used the fact that F is the inverse Laplace transform of the
function s 2 exp (—s'?k).

For the magnetic field in the less diffusive domain 9,, we
have in the region of observation (40),

1~ _
HP@w 2,0 =~ [ o0 n(as'Aop)dx. (55)
K2
and
1 ]
HgZ)(x) Z, t) = _;f F(t) K) Im (Pz.uz_lAaxpz) dx. (56)
K2

In the region of observation (45), the expressions for H are
supplemented by the head-wave contribution, giving

1 (%2 -
H)(cz)(x: z,t)= ; F(t, ) Im (?_’zﬂz_lAaxpz,l) dx

K2,1

1 -
+ J—; f F(t’ K) Im (?2”;1Aakp2) dK: (57)
K2
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and

1 (= -
HO0, 2,0 = = [ F(t 1) T (2,105 A8,p ) d

K31
1 o
-2 [ Fe 0 ans Aopyax. (59)
K3

The integrals are taken over the appropriate paths described
by (41) and (47).

6 THE FIELDS AT THE INTERFACE

Although the expressions given above are suitable for direct
numerical evaluation (to be described in the next section),
there are special cases in which they simplify somewhat and
can lead to closed-form expressions for the fields. To reduce
some of the ‘symbol clutter’ in the expressions that follow,
we introduce time variables scaled by the appropriate
diffusion constants,

7‘1 = 4D1t = 4t/01”1,
T,=4D,t =4t/ o,u,.

The factor of 4 provides an additional scaling natural to 2-D
diffusion.

Consider first the electric field E,, which is continuous
across the interface. Since E, is an even function of x, we
limit attention to 0s=x<w, With z=0 and x=0, the
modified Cagniard path for equation (27) or (38) reduces to
a loop around the branch cut associated with ; in the right
half of the p-plane. We thus arrive at

Ey(r2=0,)= -~ ijmG(t, p)Im[Ap)dp,  (59)
Where in the expression for A(p),
=—i(p>-D1")"%, (60)
and
_ (D2—1 __p2)1/2 if D1_1/2 <p <D;1/2,
2= {—i(pz —D;YH)2 D72 <p <, (61)
Now, in the region D;?<p < D;*?, we have
B 2052 _ p-1j12
m [A(e)] = ui(lvzlili’t)zlE f) - ﬂfzpz - D37’ “2)
whereas in the region D5 <p <o,
I [A(p)] = pap3(p® — DT — poui(p® — D3 H? 3)

ﬂz(P D11) #1(P - 2_1)

This last expression can only be used if the numerator and
denominator have no common zeros, i.e. if U Z .
Splitting the integral into two parts, we can write

E,(x,z=0,1)

1 f“" uluz(p - Dy
=-=1 G(tpx)
7 Jppia u3(p*— D7 Y —ui(p*>- D3 1)

1 Ui _p-1y2
+_f G(t, px)— . 1(11) 22 ) 1
7T Jpyi2 u3(p> - DY - ui(p>-D; )

Finally, the substitutions p =D "?(1+4*"? in the first

1) 172

dp

integral and p = D; *(1 + u®)"? in the second give
E,(x,z=0,)=
1 x 2 > = 2.2
THN\T exp (—x*/Ty)| exp (—x"u/Th)
1 (V]

% papizu’
(ﬂ% )u + H1(D1/D2 - 1)

1 /x3\12 X .
+ 55, T2 (i) exp (—x /Tz)J;) exp (—x“u°/T,)

popu’
X GE— w2+ 11— DDy ™ (64

This may not seem much of a simplification, but when the
permeability is constant (u; = pt, = pt,), the integrals on the
right can be evaluated analytically. The result is

1 1
E(x,z—O l‘)——;a s
2 1

X [exp (—x*/T;) — exp (—x*/T,)]. (65)

To our knowledge, this closed-form expression for the
case when both half-spaces have a finite conductivity is new
to the literature; it reduces to the known result for the case
of air over a half-space of finite conductivity (Oristaglio
1982) on setting 0, =0.

Similar expressions can be derived for the magnetic field
at the interface. There is a complication, however, in that
the inversion integrals are (formally) divergent, since they
contain implicit delta-function contributions from the
source. Proper treatment of these integrals is described in
Appendix A. We obtain for H,, the component parallel to
the interface,

(H®, H®}(x, z =0, 1)

{ Uz, #1} < 1 )yszEIQ 2.2
o t - 4t
2 swHO - (o) [ e o
pat,  —i(p> = DY = (D' —pH'”

tho + py —pai(p? = DT + py (D31 — p?)V?

xIm[ ]dp

(66)
Note that the integral here is reduced to a finite range (see
Appendix A), but there is no (obvious) closed-form

simplification for the case y, = u,. The component normal
to the interface, H,, is given by :

i (x=0,2=07, t)= pu,H,(x =0, z=0%, ¢)
1 1/2 poo
= - <—3—) j exp (—p°x*/4t)
Drin

Tt
pip3(p® = Dy H2
u3(p* =DM — pi(p? -Dy l)pdp
1\12
+ <J‘L‘_3t> sz_mcxp (—p*x?/41)
2 2 —1y172
mip(p”— D3 ) pdp. (67)

u3(p*— DY) — pi(p*>— DY)




For u, = pu, = g, this reduces to

2t D,D
H,(x=0,z=0, t)z—.ﬂ'—x:;D_%
1 2

X [exp (=x*/T;) — exp (—x*/T,)]. (68)
Finally, H,(x =0)= —H,(x = 0).

7 NUMERICAL EXAMPLES

In evaluating numerically the general expressions for the
fields in the two half-spaces, further manipulation of the
integrals is wuseful. The manipulations, described in
Appendix B, are designed to reduce the range of integration
to a standard form that is independent of the point of
observation and to subtract the asymptotic behaviour of the
integrand (as the integration variable goes to infinity) in
order to improve numerical convergence. After these
manipulations, we obtain for E,, the electric field in the

6

Cagniard technique for EM diffusion 393
more diffusive domain %,

EP(x, z, 1) =

1 g 2 1 <"2>1/2
—_—— /) +—=5—— —r?
2”#2+M1fexp( r/Ty) 22 ¢ \T, exp (—r*/Ty)
= Uy Uo¥
Xf exp (—r2v2/T)Re( R — >dv, 69
0 ! Bt o oYyt U1Y2 (69)
where now
pr= (o) S0+ 1741 | (70)
r
and
71= (0, _Pf)1/2~ (7D
Yo = (0at, ‘P%)l/z» (72)
as before,

The direct-wave part of electric field in the less diffusive

2 400
* p
oy = 1. S/m
J M1 = Ho
35,0 ]
] Line source 25 m 50 m 100 m
— © —]
T A T
30.0 I
4 z
2 o3 =10. S/m
1 Kz = Ho
= 25.0
£ :
=
o
.} 4
Ll
C  20.0
%) |
o
O
(i)
L |
W 15,04
10.0
5.0
0.0 F——r—rr

o '.’ 2 g T
0.0 50.0

USRI U
100.0 150.0 200.0

NORMALIZED TIME

Figure 4. Electric field at the interface between two half-spaces following shut-off of a steady current of 1 A in a line-source at the interface:
analytical solution (solid lines) and results obtained by numerical integration of the general expression derived by the modified Cagniard
method (symbols). Field values are shown as a function of time at three distances from the source. Time is normalzed by T = 4t/ o, u,r*, where
t is the time in s, and r =25 m.
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Figure 5. Four snapshots showing the evolution of the electric field
in two half-spaces following shut-off of a steady current of 1A in a
line-source at the interface, (x, z) = (0, 0). Medium properties are
the same as in Fig. 4. Each plot is normalized by the maximum of
the electric field at the corresponding time; grey levels are
logarithmic, decreasing by the factor 0.8 between successive levels.
Time is normalized by T =4t/o,p,r?, where ¢ is the time in s, and
r=>560m.
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Figure 6. (a) Two snapshots of the electric field in two half-spaces
following shut-off of a steady current of 1 A in a line-source at the
interface, (x, z) = (0, 0). The head-wave contribution to the field in
the lower half-space is omitted. Medium properties are the same as
in Fig. 4. Each plot is normalized by the maximum of the electric
field at the corresponding time; grey levels are logarithmic,
decreasing by the factor 0.8 between successive levels. Time is
normalized by T =4t/oypu,r®, where ¢ is the time in s, and
r=560m. (b) Head-wave contributions corresponding to the
snapshots in (a). Adding these contributions to the fields shown in
(a) gives the total field shown in Fig. 5.
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Figure 7. Four snapshots showing the evolution of the electric field
in two half-spaces following shut-off of steady currents of £1 A in
two line-sources at the interface, with the positive source at
(x, z) = (0, 0) and the negative source at (x, z) = (—10, 0). Medium
properties are the same as in Fig. 4. Each plot is normalized by the
maximum of the electric field at the corresponding time; grey levels
are logarithmic, decreasing (in absolute value) by the factor 0.8
between successive levels. The lighter-grey levels on the left
represent negative values. Time is normalized by T =4t/oyu,r?,
where ¢ is the time in s, and r = 560 m.
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domain 9, can be obtained from (69) by permuting the
subscripts 1 and 2. The head-wave contribution in the region
(D,/D,)"? <x/r=<1is given by

— 1 Mz r2 1/2
E§ K%%0=—;ﬁ7(—>emCﬂym

T,
v2,1 Y
X f exp (r*v*/T;) Im <—_!il—y2—_—) dv, (73)
0 Uo¥1+ H4Y2
where
¥1= (014 _Pg, D (74)
V2= (0212 — P50 (75)
and
pa= (o) Z (1= =20, (76)
01#1)1/2)6 <01u1>1/22
vy, =|1l——) ——{—) -. 77
21 ( Oolix/ 7 \Oalla/ 7 L

As a first example (Fig. 4), we consider the electric field
at the interface between half-spaces with conductivities
0,=1Sm™" and 0,=10Sm™". The permeability in both
half-spaces is the free-space value. The figure compares the
analytical values for the field, obtained from (65), with those
obtained by numerical integration of the general expression
(69) using a simple trapezoidal rule. Agreement between the
analytical and numerical values seems to be satisfactory.
The electric field was computed at 250 time-points for each
of the three curves, corresponding to different distances
from the source. The total computation took about 1 min of
CPU time on a VAX 8600.

Figures 5 and 6 illustrate the development of the diffusive
head wave. Fig. 5 shows a sequence of four snapshots of the
total electric field in the two half-spaces. Fig. 6(a) shows the
electric field minus the head-wave contribution for the first
two snapshots of Fig. 5; Fig. 6(b) shows the corresponding
head waves. As with a true head wave, the diffusive head
wave in the ‘slow’ medium—here, the lower half-space with
a smaller diffusion coefficient than the upper half-space—is
induced by the rapid spread of the field in the fast medium.
Physically, it is required in order to maintain the continuity
of the electric field across the interface.

The final example (Fig. 7) shows snapshots of the electric
field when two line-sources of opposite polarity are placed at
the interface, as in 2-D simulation of a finite-loop source.
Even with a finite conductivity in the upper half-space, the
familiar (2-D) smoke-ring pattern develops, with positive
and negative concentrations of current arising near the two
limbs of the source and diffusing diagonally downward into
the bottom half-space as time progresses.

8 DISCUSSION AND CONCLUSIONS

We have illustrated the application of Cagniard’s method to
(electromagnetic) diffusion problems in the canonical
example of a line-source situated at the interface between
two conductive media. With this method, space—time
expressions for the field values anywhere in the configura-
tion are obtained in the form of well-behaved integrals.
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When only the conductivity varies across the interface, the
integral expression for the electric field at the interface can
be obtained in closed form; but the general expressions
themselves are also readily computed by numerical
integration. Even for this simple configuration, this method
provides physical insight into the behaviour of the field by
isolating the contributions of the direct waves from a
diffusive head wave that develops along the interface and
propagates into the less diffusive medium.

The ideas developed here can easily be extended to deal
with multilayered media or 3-D sources. The extensions
required are mainly in the form of book-keeping and follow
the lines of the ‘generalized ray method’ that is used for the
problems of impulsive wave propagation in layered media.
These extensions will be treated in subsequent papers.
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APPENDIX A. TREATMENT OF SINGULAR
INTEGRALS

In the expressions for the magnetic field at the interface,
divergent integrals arise, which could be expected from the
presence of the (spatial) delta-function source. This
appendix describes the proper treatment of these integrals.
We begin with the transform domain expressions for H, at
the interface, which follow from (18) and (21) on putting
z=0,

. S—1/2 joo _ -

HP = -~ f _exp (—s2px)7,u1 A(p) dp (A1)
and

7(2) L 12, No —1%

H?=—— | exp(=s"px)¥.u; "A(p) dp. (A2)

To extract the correct interpretation of these integrals, we
observe that

- —~13 [
uy A(p) ~———— as|p|—>w A3
7141 A(p) U+ s (A3)
and
73 A(p) ~—E1—  as |p|—>ce. (A4)
Byt ps
Furthermore, we have
ﬂ?fiwex (_ 1/2 )d _6(
278 J oo P (=s7px) dp = 5(x). (A5)

With this, (A1) and (A2) can be re-written as

—1/2

Av=__H2 15045
¥ M1ty o) 2
x| exn(=sp0)B(p)dp (A6)
and
H® = i___s—la(x) _ s Y2
Tomtu 27

x [ e (-s"o0)B(o) dp, (A7)

—ico

(V1= 72)
(11 + 12) (U ¥1 + 1172)

(A8)

Since [B|—0 as |p|—, the integrands in the above
equations satisfy the conditions of Jordan’s lemma.
Applying the contour deformations as described in the text




gives
HO= -2 seomH(
ot 11y POHO
1(* )
—| R mBGNd (a9)
7 Jprie
and

H§2)=+~—P—ll—-6th
Bt o A

_% L:_mF (t, px) Im [B(p)] dp. (A10)

Finally, we note that Im[B(p)] is identically zero for
p>D;", which reduces these expressions to the
finite-range integrals given in the text (equation 66).

For H,, the component normal to the interface, we start
with

. s—1/2 joo -

HP =——— L exp (—s'2px)pui *A(p) dp (A11)
and

. S-—l/Z joo 1 _

HY = - f _exp (=s"px)pp; *A(p) dp. (A12)
In this case, since

Ap)~E2 (1ip) asiplow  Im(p)z0,  (ALD)

[ )

the integrals’ Cauchy principal values around infinity exist,
which is the proper way to interpret them physically. On
applying the contour deformations described in the text, we
note that the contributions from the joining circular arcs at
infinity cancel in view of (A13) (Jordan’s lemma does not
apply in this case). We thus arrive at

1 _
HO =~ F popur Im [A(p)] dp (A14)
D12
and
H<2>=—l ) F StIm[A(p)] d Al5
b (t, px)pus  Im [A(p)] dp. (A15)
Vi g Dl—l/z

APPENDIX B. NUMERICAL EVALUATION
OF THE INTEGRALS

In this Appendix, we reduce the integral expressions for the
field components to a convenient form for numerical
integration. Our reduction is surely not unique, but it leads
to a reasonably fast, accurate, and simple numerical
algorithm. Since all the integrals are similar, we describe the
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steps in detail for just the electric field component E;l),
given by (37). Writing this equation out explicitly, we have

1 w
E§,1)(x, z,t)=— 2(—m)—3/5 J;IK exp (—k?/4t)
Hilio iy
X Tm [ - — ] dx. (B1)
po¥1 + 7 (2 — kD)
where
Ky = (01,72,

. z|

lz] | x
Y1=Kr—2—l(1<2—1<?)”2r—2,

72 = (05U — 0101 + }—’%)1/2~

Introducing the dimensionless variable &k by the
substitution

K= (‘71#1"2)1/2’5

makes the range of integration run from 1 to «, independent
of r. This and some simple rearranging give

2\ 1/2 poo
By (T k
Egl)(xy z, t) == <—) L (k2 — 1)1/2

n_3/2t )

U271
YY1+ Ua¥a
where T; =4t/o,u, is the scaled time variable.

The singularity at k=1 (integrable but bothersome
numerically) is then removed by the substitution

U= (k2 — 1)1/2’

x exp (—k*r*/T,) Re ( ) dk, (B2)

giving

EM(x, z, 1) = —

2,172

K1 <r) 2

—| exp(—r¥/T)

a2\, !

X[ exp (—v*r?/T,) Re (———'uz—h—
o

Haly ) dv, (B3)
oY1t HiYa

The last step is to subtract off the asymptotic behaviour of
the integrand, using

U4 Ho
oVt UiY2 Mot

The final expression is then

as Yy —> x,

1 1
EPG 2, t)=— ==t exp (I T) + —5—
1

2\ 172 =] .
x (%) exp (/1) exp(~r?/T)
1 0

XRe< Ha HaY1 )dv.
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