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Time-domain reciprocity theorems of the time-convolution and the time-correlation type for elastodynamic wave fields in
linear, time-invariant, and locally reacting solids are discussed. Inhomogeneity, anisotropy, and arbitrary relaxation effects,
both of the active (anti-causal) and passive (causal) kind, are included. The analysis is entirely carried out in space-time,
without intermediate recourse to the frequency or the wavevector domains. The application to inverse source and inverse
constituency (inverse profiling or scattering) problems is discussed.

1. Introduction

A wave field reciprocity theorem interrelates, in a specific manner, the quantities that characterize two
admissible physical states that could occur in one and the same domain in space-time. As far as
elastodynamic wave fields are concerned, Betti [1] is commonly credited to be the first to derive a reciprocity
theorem relating to elasticity; it applies to static elastic fields. Lord Rayleigh was apparently the first to
give an elastodynamic reciprocity theorem [2]; it applies to time-harmonic vibrations in a mechanical
system. For arbitrary time variations of the wave motion in a linear, time-invariant medium, Bojarski [3]
clearly distinguished between convolution- and correlation-type reciprocity relations and he presented
the corresponding time-domain reciprocity theorems for homogeneous, isotropic, and lossless media, both
for acoustic wave fields in fluids and for electromagnetic waves. In this connection, he introduced the
concept of “effectual” (or “‘effectal”) wave field as the time-reversed counterpart of a “causal” wave field
and emphasized the relationship between time-advanced and time-retarded wave fields. A correlation-type
elastodynamic reciprocity theorem (in the present terminology) for correlation duration zero was given
by Lamb [4] (see also Love [5] and Teodorescu [6]). The convolution-type reciprocity relation for
elastodynamic wave fields in homogeneous, isotropic, perfectly elastic solids was derived by Graffi [7-10]
(see also Wheeler and Sternberg [11], Achenbach [12],-and Eringen and Suhubi [13]). Payton [14] applied
these to moving point-load problems. De Hoop [15] generalized the time-convolution reciprocity theorem
to inhomogeneous, anisotropic, viscoelastic solids. The application of reciprocity theorems to inverse
scattering is reviewed by Fisher and Langenberg [16], where an extensive list of references to earlier
papers on this subject can be found.

The present investigation deals with time-convolution and time-correlation reciprocity theorems for
elastodynamic wave fields in time-invariant configurations that are linear and locally reacting in their
elastodynamic behavior. As regards the space-time geometry in which the two admissible states occur,
this implies that this geometry is the Cartesian product D xR of a time-invariant spatial domain D < R’
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and the real time axis R. Further, the constitutive parameters of the media present in the two states are
time invariant and independent of the wave field values. No further restrictions are imposed. Inhomogeneity
and arbitrary anisotropy are included, as well as arbitrary relaxation effects. Both the time-convolution
and the time-correlation type of reciprocity theorem have an important field of application in inverse
source and inverse constituency (inverse profiling or scattering) problems. These applications will be
discussed from a general point of view.

The position of observation in R® is specified by the coordinates {x,, x,, x;} with respect to a fixed,
orthogonal, Cartesian reference frame ‘with origin O and the three mutually perpendicular base vectors
{i,, i,, iz} of unit length each. In the indicated order the base vectors form a right-handed system. The
subscript notation for Cartesian vectors and tensors in R® is employed and the summation convention
applies. The corresponding lower case Latin subscripts are to be assigned the values {1, 2, 3}. Whenever
appropriate, the position vector will be denoted by x = x,i,. The time coordinate is denoted by ¢ Partial
differentiation is denoted by 9; 9, denotes the differentiation with respect to x,, 3, denotes the differentiation
with respect to 1.

The reciprocity theorems will be derived for a bounded domain D. In the analysis also the boundary
8D of D occurs. The unit vector along the normal to 9D is denoted by v, ; it points away from D (Fig. 1).

AY

Fig. 1. Time-invariant configuration to which the reciprocity theorems apply.

2. Some properties of the time convolution and the time correlation of space-time functions

In this section we present the properties of the time convolution and the time correlation of space-time
functions as far as they are needed in the derivation of the reciprocity theorems. Let f; =fi(x, t) and
f,=f.(x, t) be two transient space-time functions. By this we mean that the functions are absolutely
integrable on the entire ¢ €R. Then, the time convolution of f; and f; is defined as

C(fl,fZ;xaT):J’

te

fl(x5 t)fZ(x’ T_t) dt

=J filx, = 0)fa(x, 1) dt = C(fs, f15 %, 7). (2.1)

l
!
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Equation (2.1) shows that the time convolution is symmetrical in f; and f,. The time correlation of f; and
f> is defined as

R(f1,f2; %, T)=j

te

filx, )fa(x, t—7) dt

=J Silx, t+7)fox, 1) dt = R(f3, f1; %, —7). (2.2)

Equation (2.2) shows that the time correlation is not symmetrical in f; and f;.
Let, now, f denote the time-reversed of f, i.e.,

flx, 1) =f(x,—1). (2.3)
Then, it follows from (2.1)-(2.3) that

R(fi, fo3 % 1) = C(fi, Fo3 %, 7). (24)
Using (2.1), we further obtain the properties

C(fi,fsx7)=C(fi, ;% 7) (2.5)
and V

C(fr, fo3 % 1) =C(fi, fo5 %, 7). (2.6)
For the time derivative of the time convolution the rules

3.C(f1,fo; %, 1) =C(fi,0.25 %, 7)=C.f1, /23 %, 7) (2.7)
apply. In view of the property

8.f=-0.f, (2.8)
the time derivatives of the time correlation are taken care of by using (2.4} in conjunction with (2.7), i.e.,

30,C(f1, fos %, 7) = C@3.f1, fo3 %, 7)== C(f1, 3.f2; %, 7). (2.9)

For the incorporation of relaxation effects in the reciprocity theorems we also need the time convolution
of three space-time functions. For this, either of the definitions

C(flaf2,fé; X, T) = C(.fla C(f2,.f£’a); X, T) = C(C(fl af2)9.f3; X, T) (2'10)

holds. ‘
In view of its simpler properties, the time-convolution concept is used throughout the entire subsequent
derivations, i.e., both for the time-convolution and for the time-correlation reciprocity theorems.

3. Properties of the elastodynamic wave field in the configuration

In each subdomain of the configuration where the elastodynamic properties vary continuously with
position, the elastodynamic wave field quantities are continuously differentiable and satisfy the equations
Y

_Algm,p,qamTp,q + djk =ﬁca (31)

Ai,j,m,ramvr - éi,j = hi,j, ) (3,2)




482 A.T. De Hoop, H.J. Stam /[ Elastodynamic time-domain reciprocity

where

e 7,,=stress (Pa),

® v, = particle velocity (m - s™'),

e &, =mass flow density rate (kg-m™>-s %),

® ¢, =deformation rate (s™'),

e f, =volume source density of force (N - m™),

® h,;=volume source density of strain rate (s™),

® Ay =388t 8:,85m)s

and §,,, is the symmetrical unit tensor of rank two (Kronecker tensor). Equations (3.1) and (3.2) are
supplemented by the constitutive relations. For a linear, time-invariant, locally reacting solid these are

;=9 J KiipalX T)Tp (X, t—7) d7, (3.3)
ék = at j Yk,r(x: T) vr(x, = T) de (3.4)
where
® k,;,q= compliance relaxation function (Pa' s,

® y,,=inertia relaxation function (kg -m™-s7").
Using the notation of (2.1), (3.3) and (3.4) can be rewritten as

é",j(x’ )= aTC(Ki,J',P,q, Tp.a> % t)’ (35)
ék(xa t) = atC(Yk,ra U5 X, t)s (3.6)

respectively. In (3.3) and (3.4), inhomogeneity, anisotropy and relaxation of the solid are included. It is
noted that the type of anisotropy considered here has been introduced by Bromwich [17] (see also Love
[18]); relaxation effects of the indicated kind have been introduced by Boltzmann [19] and, in a more
general setting, by Volterra [20, 21] (see also Chao and Achenbach [22] and Gurtin and Sternberg [23]).

If{kpq> Vit (x, 7)=0when 7 <0, the solid at x is causal, to use the terminology of linear, time-invariant
systems. If

Ki,j,p,q(xa T) = Si,j,p,q(x)a(T), (3.7)
Yk,r(x, T) = pk,r(x)S(T)a (38)

where 8(7) is the unit impulse (Dirac distribution), the solid is instantaneously reacting, and s;;,, and
pi. are its compliance and its (tensorial) volume density of mass, respectively. If {k;,q, Vi, }(x, 7)=0
when >0, the solid is anticausal or effectual. From an energetic point of view, a solid for which
{Kijpas Yir}(x, 7)#0 when 7>0 is dissipative, a solid for which (3.7) and (3.8) hold is lossless, and a
solid for which {k; ;4> Vi }(x, 7) # 0 when 7<0 is active. A solid that is either dissipative or lossless is
. also denoted as passive. For our reciprocity theorems no specific type of relaxation function is presupposed.
Conservation of energy of course requires an elastodynamically active solid to be stimulated, through
the constitutive parameters, by some other physical phenomenon (for example, by the passage of light
through it). .

It is assumed that x; ; , , and vy, are piecewise continuous functions of position. At an interface between
two different solids, at which we assume the solids to be in rigid contact, the constitutive parameters jump
by finite amounts. Across such an interface the traction (i.e., the normal component of the stress) and the
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particle velocity are continuous. If an elastically impenetrable object is present, either the traction (at a
void) or the particle velocity (at an immovable rigid object) has zero value at its boundary. Through the
pertaining boundary conditions the presence of either interfaces or impenetrable objects is accounted for
in the reciprocity relations.

The two states that occur in the reciprocity theorems will be denoted by the superscripts “a”” and “b”,
respectively. It is noted that the two states can apply to different source distributions and to solids with
different properties, but they must be present in one and the same domain in space-time.

4. The reciprocity theorem of the time-convelution type

The reciprocity theorem of the time-convolution type follows upon considering the interaction quantity
Am,r,‘p,q[(j(_—T;lJ,c]a D]:; x, T) - C(_Tg,qs vi:; xs T)]'

Using (3.1) and (3.2) for each of the two states we obtain

A s pgdmC(—=Tag 005 x, 7) = C(f7 &2, 00 x, 1)+ C(—15,, Ao+ é0 %, T) (4.1)
and

A rpaBmC (=T gy V35 2, ) = C(f7 = B, 03 x, 1)+ C (=1 4, B o+ €5 05 %, 7). (4.2)
Now, in view of (3.5) and (3.6) we have

C(P, v% x,7) = C(D%, 075 x,7) = 0,C(Yor— Vir V5, 0B X, 7) (4.3)
and

C(—75 4 €03 %, T) — C(=T5gs €503 % ) =—08,C(KD 40— K i pas Toa> Tojs % T, (4.4)

where (2.7) has been used. Subtracting (4.2) from (4.1) and employing (4.3) and (4.4), we arrive at
A s g®ml C(—75 4, 02 x, 7) = C (=1 4, 035 %, T)]
=0,.C(You— Vi 05 03 %, 7) =3,C(K} 045~ K3 p.0s Thg> Tojs % 7)
+C(f2, 08 x, 7)Y+ C(—12 4, hS s %, T) = C(f7, v x, 7)— C(—7h,, hi s X, 7). (4.5)

Equation (4.5) is the local form of the time-convolution reciprocity theorem. The first two terms in the
right-hand side are representative for the differences in the properties of the solids present in the two
states; they vanish at those locations where yoi(x, 7) = v} ,(x, 7) and 5, ;(x, 7) =k}, 4(x, 7) for all e R.
In case the latter conditions hold, the two media are denoted as each other’s adjoints. Note in this respect
that the adjoint of a causal (effectual) medium is causal (effectual), too. The last four terms in the right-hand
side of (4.5) are associated with the source distributions; they vanish at those locations where no sources
are present. Upon integrating (4.5) over the subdomains of D where both sides are continuously differenti-
able, applying Gauss’ divergence theorem to the resulting left-hand sides, and adding the results, we obtain

J’ Am,r,p,qym[c(—T;,q’ v$; x’ T) - C(_Tlp),q’ v?; x’ T)] dA
xedD

. b a a ,b, _ b . ,.a a b,
- J [a-rc(')'r,k_ Yirs Uy Uiy X, T) aTC(Kp,q,i,j Kijpas Tpas Tijs X, T)] dv
xeD

+J [C(ffa vl:; X, T)+ C(_T;,qa h:,q; X, T)_ C(f?, U?; X, T) - C(_Tz,qa h:,q; X, T)] dv. (46)
xeD
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Equation (4.6) is the global form, for the domain D, of the time-convolution reciprocity theorem. Note
that in the left-hand side the contributions from interfaces between different solids present in D have
canceled and that the contributions from the boundaries of elastically impenetrable objects present in D
have vanished in view of the boundary conditions stated in Section 3.

5. The reciprocity theorem of the time-correlation type

The reciprocity theorem of the time-correlation type follows upon considering the interaction quantity
Avrp gl R(—T54s vy; x, 7)+ R(—1h,, v x, —7)].
On account of (2.4) and (2.6), this interaction quantity is equivalent to
Ayl C(=75 4, D23 %, )+ C (=75 4, 035 x, T)].
Using (3.1) and (3.2) for each of the two states we obtain

Ay dmC (=75, B2 x, 7) = C(f7— &2 5% x, 1)+ C(— pq,hb +é_;q;x,7') (5.1)
and

ArmrpadmC (=70, 0% %, 1) = C(FE = @0, 0% x, )+ C (=75, h%,+ €35 X, 7). (5.2)
Now, in view of (3.5) and (3.6), we have

—C(@,, v x, 7)— C(D2 0% x, 7) =08,C (Y2 — Vi, V2, Uiy X, 7) (5.3)
and

C(—7%,, éngs %, T)+C(— o s €003 % T) =8,C (Ko 00— Kiipas Togs Togs X T), (5.4)

where (2.7) has been used. Adding (5.2) to (5.1) and employing (5.3) and (5.4), we arrive at
A s gdm[ (=75 4, BE; X, )+ C (=75 4, 035 %, 7)]
=8,C(2k— Vir U3, D X, ¢)+a C(;zzqij—x?j,,q, T gs Togs X%, T)
+C(f2 o0 x, )+ C('—T;,q, s % )+ C(f?, v x, 1)+ C(—7o,, by % 7). (5.5)

Equation (5.5) is the local form of the time-correlation reciprocity theorem. The first two terms in the
right-hand side are representative for the differences in the properties of the solids present in the two
states; they vanish at those locations where 75, (x, 7) = Vi (%, 7) and E‘;,q,,;j(x, T) = K5 pq(x, 7) forall TeR.
In case the latter conditions hold, the two media are denoted as each other’s time-reverse adjoints. Note
in this respect that the time-reverse adjoint of a causal (effectual) medium is an effectual (causal) one.
Upon integrating (5.5) over the subdomains of D where both sides are continuously differentiable, applying
Gauss’ divergence theorem to the resulting left-hand sides, and adding the results, we obtain

J Anrpa¥ml C(=Th g, B73 X, 7) + C (=7 4, v5; x, 7)] A
xedD
- J D [a?C(??’k a yz’r’ or, 52; X, 7) +a7c(’2;q’i’j - sz,p.q’ T;,qa Flij; x,7)]dV
xXe

+J [CUL 05 %D+ C(=Thg, g %, 1)+ C(f7, 03 %, 1)+ C(=Tp g, by gy %, 7)1V, (5.6)
xeD

Equation (5.6) is the global form, for the domain D, of the time-correlation reciprocity theorem. Note
that in the left-hand side the contributions from interfaces between different media present in D have
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canceled and that the contributions from the boundaries of elastically impenetrable objects present in D
have vanished in view of the boundary conditions stated in Section 3.

6. Application to inverse problems

In this section we discuss the relevance of the reciprocity theorems (4.6) and (5.6) to inverse problems.
In this respect, we distinguish between inverse source problems and inverse constituency problems. In an
inverse source problem the aim is to reconstruct the volume source densities of strain rate and force of
elastodynamic sources present in some inaccessible domain in space from the measured values of the
emitted elastodynamic wave field in some other domain in space. The constitutive parameters of the solid
in which the elastodynamic radiation takes place are assumed to be known. In an inverse constituency
problem (also denoted as an inverse profiling or inverse scattering problem) the aim is to reconstruct the
distribution of constitutive parameters in some inaccessible domain in space by irradiating the configuration
by known sources located in the embedding and measuring the elastodynamic wave field response in
some other domain in the embedding; the constitutive parameters of the embedding are known. The two
types of problems will be discussed separately.

6.1. Inverse source problem

In the inverse source problem the elastodynamic wave field in state “a” is taken to be one that is
radiated by the unknown source distributions {f7, h, ,}. Let DT = R’ be their spatial support. The radiated
wave field {~7.,, v} } is measured in some, accessible, observational domain D = R’. The intersection
of D" and D is empty (Fig. 2). State “b” is taken to be a computational state, denoted as the
‘“observational” one. The corresponding wave field {—frf,fq, v} that would be radiated by known sources
with distributions {f?, hf,fq} is computed and its interaction with the measured elastodynamic wave field
in D is evaluated. In general, one could say that the introduction of the observational state is representative
for the processing of the measured data. Since only the interaction in D is considered, it makes no sense
to take the support of {f’ a2 hf,fq} larger than D, Finally, the solid in the observational state is taken to
be either the adjoint (for the application of (4.6)) or the time-reverse adjoint (for the application of (5.6))
of the one in which the unknown sources radiate.

Fig. 2. Configuration illustrative for the inverse source problem: unknown acoustic sources radiate in D7 ; the elastodynamic wave
field is measured in D? and on S,
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The reciprocity relations (4.6) and (5.6) are now applied to the domain interior to the closed surface
S? that is taken such that DT and D are located in its interior. Then, (4.6) leads to

| reuns e, iinnay

xeD
=J' n["C(f,:Q, D;F; X, T)+C(_T;:qa hgq;xa T)]dV
' xeD

_J " Am,r,p,qu[c(_T;:q’ U?, x, T) - C(_T.}{Zq, UiT; xs T)] dA, (6'1)
xeS§
and (5.6) leads to

j [—CT, 52,%, 1) = C(—Tpg higs %, 7)1dV
xeDT
=j [C(T2, 0T %, 1)+ C(—1T,, K% 3 )] AV
.vceDﬂ

—J , Am,,,p,qvm[C(—qu, 5% x, 7)+ C(—Ff,fq, vl x, 7)]dA. (6.2)
xeS .

In (6.1) and (6.2) the left-hand sides contain the unknown quantities, while the right-hand sides are known
provided that the necessary measurements and evaluations are also carried out on S, A solution to the
inverse source problem is now commonly constructed by taking for {f 2 h,ffq} a sequence of N linearly
independent distributions with spatial support D* and fixed, preferably broadband, time behavior (for
example, an impulse). The corresponding sequence of elastodynamic wave field distributions {—qu, v}
is computed. Next, the unknown source distributions { f T h ,f, 4} are expanded into an appropriate sequence
of M linearly independent space-time expansion functions with spatial support DT, the corresponding
expansion coefficients are unknown. Substitution of the results in (6.1) and (6.2), and the evaluation of
the relevant integrals leads to systems of linear algebraic equations with the source expansion coefficients
as unknowns. When M = N, the system can be solved, unless the pertaining matrix of coeflicients is
singular. However, even if this matrix is non-singular, it turns out to be ill-conditioned in all practical
cases. Therefore, one usually takes M > N, and a best fit of the expanded source distributions is obtained
by the application of minimization techniques.

At this point, some more must be said about the role of S, In practice, one is as a rule interested only
in causal media. Then, in the application of (6.1), it is advantageous to choose the wave fields causal as
well. Given the fact that S? surrounds all sources, the integral over S can be replaced by an integral
over any sphere S, with radius 4 and center at the origin such that S, surrounds S”. (This follows from
the application of (4.6) to the domain in between S, and S.) However, for sufficiently large values of
4, the causal wave field on S, is zero since it propagates with a finite maximum speed away from the
sources. Hence, under these circumstances, the surface integral in the right-hand side of (6.1) vanishes.
. A similar argument does not apply to the surface integral in the right-hand side of (6.2) since in (6.2)
effectual (or anticausal) wave fields are involved in all cases. This difference in the roles of the surface
integrals in (6.1) and (6.2) has been pointed out by Bojarski [3].

6.2, Inverse constituency problem A

In the inverse constituency problem the elastodynamic wave field in state ““a” is taken to be the one
that irradiates the configuration. Let D' = R’ be the spatial support of the irradiating sources with known
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distributions {f%, h;,,q} and let the corresponding elastodynamic wave field be {—7} ,, vi}. This wave field
is measured in some accessible, observational domain D < R®. Let, further, D* = R® be the (inaccessible)
domain in which the constitutive parameters are unknown. The intersections of D* and D' and of D*
and D are empty; D' and D may, however, have points in common, or may even completely coincide
(Fig. 3). State “b” is taken to be a computational state, denoted as the “observational” state. The
corresponding wave field {—Tf,fq, v¥} that would be emitted by known elastodynamic sources with distribu-
tions {f2, hf,?q} in the known solid with the constitutive parameters {K,{fq,,», s yfk} of the adjoint (for the
application of (4.6)) or the time-reverse adjoint (for the application of (5.6)) of the known embedding is
computed and its interaction with the measured wave field in D? is evaluated. Since only the interaction
in D? is considered, it makes no sense to take the support of {f;’, h%} larger than D. The unknown
constitutive parameters of D* are denoted by {«;;, ., Y.}, D’ being the support of the differences

s 0 s n s i) K — 2
{5 ipa— Kpais Yir— Vet and  {Kijpq= Kpgij Yier™ Yrxt

for the application of (4.6) and (5.6) respectively.
The reciprocity relations {4.6) and (5.6) are now applied to the domain interior to the surface S that
is taken such that D', D and D are located in its interior. Then (4.6) leads to

J [—C(fi, U;{), X, T)+ C('_T{qu h;,q; X, T)] dv
xeD*

=j LU 0% % 7) = C(—12, By 5, 1)] AV

eD’
+J [=C(f7, 055 %, 1)+ C(=7pq, hygs x, 7)1V
xeD?
_J' nAm,r,p,qu[C(—T;,qa U?, X, 7') - C(—qua v!n X, T)] dAa (63)
xeS

in which

hpq= afc(’({zj,p,q ~ Kpqijs —T::,jQ X, 7) (6.4)

Fig. 3. Configuration illustrative for the inverse constituency problem: known acoustic sources in D' irradiate the contrasting domain
D* with unknown properties; the elastodynamic wave field is measured in D and on S2,
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is the equivalent contrast volume source density of strain rate in D”, and
f::a‘rc(’)’gr_’y:,ka U;c; X, T) (65)

is the equivalent contrast volume source density of force in D*. In the same way, (5.6) leads to

J [—C(f:’ 5;{2; X, T) - C(—F;qu h;,q; X, T)] dv
xeD*
[ rewnenn e by x ey
xeD'

+j [C(T2, ol 3, )+ Cl=rpy O 5, 7)1 AV
xeDn

_J‘ o Am,r,p,q Vm[c(—TIiJ,q, 5?a X, T) + C(_"ng’ Ui; X, T)] dA5 (66)
xeS
in which

h;,q = arc(’z.il,zj,p,q - K;,q,i,j, —T::,j; X, T) (6.7)

is the equivalent contrast volume source density of strain rate in D, and
fi:afc(yﬁr_’yi,ka U;(, X, T) (6'8)

is the equivalent contrast volume source density of force in D"

In (6.3) and (6.6), the left-hand sides contain the unknown quantities, while the right-hand sides are
known provided that the necessary measurements and evaluations are also carried out on S, The easiest
way to address the inverse constituency problem is to consider it as an inverse source problem for the
quantities {h;, 4, f;}. Once values for these have been obtained, the solution of the forward or direct source
problem with known values of {h} , fi} and {h},, fi} yields the values of {—7},, vi} in D and since
{K‘,?j,p)q, yﬁ,} are known, the temporal deconvolution of either (6.4) and (6.5) or (6.7) and (6.8) yields the
values of {k, 4/, Yri}. As to the role of the surface integrals over 57 in the right-hand sides of (6.3) and
(6.6), the same remarks as for the inverse source problem apply.

To conclude our investigation, we want to emphasize that the uniqueness and the existence of solutions
to both the inverse source and the inverse constituency problem are, for the larger part, at the moment

open questions.

. 7. Conclusion

Time-domain reciprocity theorems for the elastodynamic wave field in linear, time-invariant, and locally
reacting media have been derived via a full space-time method. Inhomogeneity, anisotropy, and relaxation
effects of the solid are included. One of the theorems is of the time-convolution type, the other of the
time-correlation type. The application of the two theorems to inverse source and inverse constituency
problems has been discussed.
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