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Time-domain reciprocity theorems for electromagnetic fields in dispersive media
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Time-domain reciprocity theorems of the time-convolution and the time-correlation type for electro-
magnetic fields in linear, time-invariant, and locally reacting media are discussed. Inhomogeneous,
anisotropic, and arbitrarily dispersive, both active and passive, media are included. The analysis is
entirely carried out in space-time, without intermediate recourse to the frequency or the wave vector
domain. The application to inverse source and inverse constituency (or inverse profiling) problems is

briefly indicated.

1. INTRODUCTION

A field reciprocity theorem interrelates, in a specif-
ic manner, the quantities that characterize two ad-
missible physical states that could occur in one and
the same domain in space-time. As far as electro-
magnetic fields are concerned, Lorentz [ 1896] is com-
monly credited as the first to derive a reciprocity
theorem; his theorem applies to “the propagation of
light vibrations,” i.e., to time-harmonic fields. The
interaction quantity that occurs in Lorentz’s reci-
procity theorem (see also Van Bladel [1964, p. 205])
was later denoted by Rumsey [1954] (see also Van
Bladel [1964, p. 234]) as the “reaction” between the
sources and the fields in the two states. In their
analyses, H. A. Lorentz and Rumsey incorporated
general reciprocal anisotropic and lossy media.
Welch [1960] (see also Van Bladel [1964, p. 193])
seems to be the first to have derived a time-domain
reciprocity theorem for electromagnetic fields; it is of
the correlation type and applies to homogeneous,
isotropic, and lossless media. His derivation employs
Fourier transforms with respect to time and makes
use of the corresponding frequency-domain result. In
a subsequent paper, Welch [1961] changed the theo-
rem into one of the time-convolution type and in-
cluded losses of the conduction type. A convolution-
type reciprocity theorem applying to general causal
dispersive media was presented by Ru-Shao Cheo
[1965]. His proof was based on spage-time argu-
ments only; nonreciprocal media were excluded.
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Geurst [1963] had earlier derived a similar reci-
procity relation, using, however, the time Fourier
transform in the intermediate steps. A full space-time
version of the reciprocity theorem for homogeneous,
lossless media can also be found in Felsen and Marcu-
vitz [1973]. Bojarski [1983] clearly distinguished be-
tween convolution- and correlation-type reciprocity
relations and presented the corresponding time-
domain reciprocity theorems for homogeneous, iso-
tropic, and lossless media, where the electromagnetic
field is easily expressible in terms of its scalar and
vector potentials (in the Lorentz gauge) and where
the electromagnetic Green’s dyad is shift-invariant in
space-time. In this connection, he introduced the
concept of “effectual” field as the time-reversed
counterpart of a “causal” field and emphasized the
relationship between time-advanced and time-
retarded fields. Time reversal and space reversal were
also introduced in the discussion by Kong [1972] on
the generalization of electromagnetic reciprocity the-
orems to bianisotropic media, of which he particu-
larly discussed the bianisotropy that is induced in
moving media in accordance with the theory of rela-
tivity.

The application of reciprocity theorems to radi-

-ating apertures was studied by Van Bladel [1966].

The present author [de Hoop, 1959] investigated
their application to the direct scattering of electro-
magnetic waves (see also Van Bladel [1964, p. 254])
and to multiport antennas [de Hoop, 1975]. The ap-
plication to inverse scattering is reviewed by Fisher
and Langenberg [1984], where an extensive list of
references to earlier papers can be found.

The present investigation deals with time-
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Fig. . Time-invariant configuration to which the reciprocity the-
orems apply.

convolution and time-correlation reciprocity theo-
rems for clectromagnetic fields in time-invariant con-
figurations that are linear and locally reacting in
their electromagnetic behavior. As regards the space-
time geometry in which the two admissible states
occur, this implies that this geometry is the Cartesian
product 2 x £ of a time-invariant spatial domain 2
< #? and the real time axis #. Further, the constitu-
tive parameters of the media present in the two states
are time invariant and independent of the field
values. No further restrictions are imposed.

The position of observation in %> is specified by
the coordinates {x,, x,, x5} with respect to a fixed,
orthogonal, Cartesian reference frame with origin ¢
and the three mutually perpendicular base vectors
{i,, i,, i3} of unit length each. In the indicated order
the base vectors form a right-handed system. The
subscript notation for Cartesian vectors and tensors
in #° is employed and the summation convention
applies. The corresponding lower case Latin sub-
scripts are to be assigned the values {1, 2, 3}. When-
ever appropriate, the position vector will be denoted
by x = x,i,. The time coordinate is denoted by t.
Partial differentiation is denoted by 4, 0, denotes dif-
ferentiation with respect to x,, and 9, denotes differ-
entiation with respect to t.

The reciprocity theorems are derived for bounded
domains 2. In the analysis also the\ boundary 02 of
@ occurs, as well as the complement 2’ of the union
of @ and 02 in #°. The unit vector along the normal
to 02 is denoted by v; it points away from 2 (Figure
1).

2. SOME PROPERTIES OF TIME-CONVOLUTION
AND TIME-CORRELATION OF SPACE-TIME
FUNCTIONS

In this section we present the properties of the
time-convolution and the time-correlation of space-
time functions as far as they are needed in the deri-
vation of the reciprocity theorems. Let f; = fi(x, 1)
and f, =f,(x, t) be two transient space-time func-
tions. By this we mean that the functions are abso-
lutely integrable on the entire ¢ € #. Then, time-
convolution of f, and f, is defined as

Clfpfos % 1) = f i, 0f5(x, T — ) dt
te R

Clfi [ % 1) = j filx, T — 0 f,5(x, 1) dt (1)
Clfi fo: %, 1) = C(f2, f13 X, 7)

Equation (1) shows that time-convolution is sym-
metrical in f; and f,. Time-correlation of f; and f, is
defined as

R(fi, [25% 1) = J [ix, ) fx, t — 1) dt
te R

R(fp fos %, 1) = f i, t+ 1) fo(x, 1) dt V)]

R(fy, fo3 %, 1) = R(fz,fﬁ X, — 1)

Equation (2) shows that time-correlation is not sym-
metrical in f; and f, .
Let, now, f denote the time-reversal of f; i.e.,

Jex, 0 =f(x, —1) 3)
Then, it follows from (1)—(3) that
R(f3: f25% 0 = CUfy, fo5 %, ©) Q)
Using (1), we further obtain the properties
Cfys 5% 0 = Cf1, f25 %, 7) ©)
and
Cf1 o3 % 1) = C(f1, f23 % ©) (©)

For the time derivative of time-convolution the rules

azc(fls fz; X, T) = C(fly atfz; X, T)

0]
0.C(f1, o3 %, 1) = C@, f1, 1%, 7)
apply. In view of the property
o.f =—0o.f ®
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the time derivatives of time-correlation are taken
~care of by using (4) in conjunction with (7), i.e.,

azc(flsf_z; X, T) = C(atflifz; X, T)
8.C(f1s fo3 % ©) = —C(f1, 0, [ X, 7)

For-the incorporation of dispersive media in the reci-
procity theorems we also need the time-convolution
of three space-time functions. For this, either of the

definitions
C(fpfzafa; X, T) = C(fl: C(fz’f3)§ X, T)
C(f15f25f3; X, T) = C(C(f13f2)’f3; X, T)

©®

(10)

holds.

In view of its simpler properties, the time-
convolution concept is used throughout the entire
subsequent derivations, ie, both for time-
convolution and for time-correlation reciprocity the-

orems.

3. PROPERTIES OF THE ELECTROMAGNETIC FIELD
IN THE CONFIGURATION

In each subdomain of the configuration where the
electromagnetic properties vary continuously with
position the electromagnetic field vectors are con-
tinuously differentiable and satisfy Maxwell’s equa-
tions

(11
12)

0,D;— €, ,0,H, = —J;

ik,q i

g4, 00 E,+0,B;= —K,

where

E, electric field strength, Vm™?;
1

H_ magnetic field strength, Am™",

electric flux density, Cm~?;

B; magnetic flux density, T;

J; volume source density of electric current, Am~2;
2

K, volume source density of magnetic current, Vm™*;

&4, is the Levi-Civita tensor: g;, , = +1if {i, k, q} is
an even permutation of {1, 2, 3}, &;, , = —11if {i, k,
q} is an odd permutation of {1, 2, 3}, and ¢, , = O in
all other cases, Equations (11) and (12) are supple-
merited by the constitutive relations. For a linear,
time-invariant, locally reacting medium these are

o

Dy(x, t) =& J Xi % DE X, £ — 1)dr 13)
By(x, 1) = po J‘OO K% DH (X, t — 1) dr (14)
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where

g, permittivity in vacuum, Fm™;

X, electric relaxation function, s™%;

Yo permeability in vacuum, Hm™?*;

K;, magnetic relaxation function, s~ 1

In SI, we have p,=4n%10"7 Hm™' and ¢, =

1/po c§, with ¢ = 299792458 ms™!. Using the nota-
tion of (1), (13) and (14) can be rewritten as

(15)
(16)

Dy(x, 1) = 6 C(¥; ,» Ep3 X, 1)

Bi(x, t) = puo Clrc; 4, Hys %, 1)
respectively. In (13) and (14), inhomogeneity, ani-
sotropy and dispersion of the medium are included.

If {x; , %;,,1(X, ©) = 0 when © < 0, the medium at x
is causal. If

7
(18)

€ Xi,,(%, T) = £ (x)5(7)

Ho¥jq(Xs T) = 15 [(X)0(7)

where 6(t) is the unit impulse (Dirac distribution), the
medium is instantaneously reacting, and ¢; , and y;
are its permittivity and permeability, respectively. If
{Xi.p» ¥;}(X, ©) = 0 when 7 > 0, the medium is anti-
causal or effectual. From an energy point of view, a
medium for which {y, ,, ; }(x, ©) # 0 when 7 > 0 is
dissipative, a medium for which (17) and (18) hold is
lossless, and a medium for which {y; ., x; }(x, 7) # 0
when 7 < 0 is active. A medium that is either dissi-
pative or lossless is also denoted as passive. For our
reciprocity theorems no specific type of relaxation
function is presupposed.

It is assumed that x; , and x;, are piecewise con-
tinuous functions of position. At an interface between
two different media they jump by finite amounts.
Across such an interface the tangential components
of the electric and the magnetic field strengths are
continuous. If an impenetrable object is present,
either the tangential components of the electric or the
tangential components of the magnetic field strength
have zero values at its boundary. Through the rele-
vant boundary conditions, the presence of either
interfaces or impenetrable objects is accounted for.

The two states that occur in the reciprocity theo-
rems are denoted by the superscripts a and b, respec-
tively. It is noted that the two states can apply to
different source distributions and to different media,
but they must be present in one and the same
domain in space-time.
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4. RECIPROCITY THEOREM
OF TIME-CONVOLUTION TYPE

The reciprocity theorem of the time-convolution
type follows upon considering the interaction quan-
tity &, ; ,[C(E?, H%; x, 7) — C(E}, H$; %, 7)]. Using (11)
and (12) for each of the two states, we obtain

&, 0. C(ES, HY; x, 1) = —C(0,B] + K}, H}; %, 7)

— C(E?, 8,D% + J?; %, 7) (19)
and
&, 0, C(E}, Hj; x, 1) = —C(0, B} + K3, H}; %, 7)

— C(Eb, 0,D% + Ji; %, 7) (20)
Now, in view of (15) and (16), we have
C(9, Bf;, Hf; x, 1) — C(@,B], H?; X, 7)

= o0, Clcs, — 13 ;, H}, HY; %, 7) 2
and
C(E?, 9,D%; x, 7) — C(E%, 8,D%; %, 7)

=600, C5i — Xips Ef Ep3 %, 7) 22

where (7) has been used. Subtracting (20) from (19)
and employing (21) and (22), we arrive at

£, 0,[C(ES, H; x, 7) — C(E, HY; %, 7)]
=1y 0, Cxb, — x4 ;, H}, Hy; %, 7)

q.J°
+ 800, Clxes — Xps Ef Eps %, 7)
— C(K3, HY; %, 7) — C(EF, Jbx, 1)

+ C(K%, H%; %, 1) + C(EL, JP; X, 7) (23)
Equation (23) is the local form of the time-
convolution reciprocity theorem. The first two terms
on the right-hand side are representative of the differ-
ences in the properties of the media present in the
two states; they vanish at those locations where
15.4%, 1) = 1P (%, 7) and K] (%, T) = K (X, 7) for all T
€ 4. In case the latter conditions hold, the two media
are denoted as each other’s adjoints. Note in this
~ respect that the adjoint of a causal (effectual) medium
is causal (effectual), too. The last four terms on the
right-hand side of (23) are associated with the source
distributions; they vanish at those locations -where
no sources are present. Upon integrating (23) over
the subdomains of 2 where both sides are continu-
ously differentiable, applying Gauss’ divergence theo-
rem to the resulting left-hand sides, and adding the
results, we obtain

DE HOOP: RECIPROCITY THEOREMS IN DISPERSIVE MEDIA

j &, i [C(E{, HY; x, 1) — C(E}, Hf; %, 1)] dA
x e 0D

= f Lo 0, CO5,, — 1 ;> HY, Hys %, 7)
xe D
+ 80 ar C(X;,i - X?,p’ El:a EZ: X, t)] dV
+ J: [—C(K4, HY; x, ©) — C(EZ, J?; %, 7)
3

+ C(K?, HY; x, 7) + C(E, J%; x, 1] dV (24)

Equation (24) is the global form, for the domain 2, of
the time-convolution reciprocity theorem. Note that
the contributions from interfaces between different
media present in & have cancelled and that the con-
tributions from the boundaries of impenetrable ob-
jects present in & vanish in view of the boundary
conditions stated in section 3.

5. RECIPROCITY THEOREM
OF THE TIME-CORRELATION TYPE

The reciprocity theorem of the time-correlation
type follows upon considering the interaction quan-
tity €., ,[R(E?, H?; x, 1) + R(E}, Hf; x, —7)]. On ac-
count of (4), this interaction quantity is equivalent to
&, ;L C(ES, ﬁ?; x, 1) + C(E, HY; x, 7)]. Using (11)
and (12) for each of the two states, we obtain

£,:;0, C(ES, HY; x, 1) = —C(0,B] + Kj, HY; %, 1)

— C(E$, 8,D} + T3 %, 7) (25)
and
€41, 0, CE2, HY; x, 1) = —C(@, B} + K}, H}; %, 7)

— C(E?, 0,D% + J; X, 7) (26)
Now, in view of (15) and (16), we have
—C(8,B%, H% x, 1) — C(8,BY, HY; x, 1)

=, 0, C(&5, — 1% ;, HY, Hys %, 1) ‘ 27
and
—C(ES, 3,D%; %, 1) — C(EY, 0,D; X, 7)

=800, C(T}, — Xpi» ED E3 %, 7) (28)

where (7) has been used. Adding (26) to (25) and
employing (27) and (28), we arrive at
g, 0[C(ES, HY; x, 1) + C(EY; H; %, 1)]

= o0, C(E , — %5, HY, Hs %, 1)

+ & ar C(X—?,p - Xap,l" E‘iz’ E-‘Z; X, T)
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Fig. 2. Configuration illustrative of the inverse source prob-
lem: unknown sources radiate in @7; the field is measured in ¢
and on &%,

— C(KY, H; %, 1) — C(E], JYs %, 1)
— C(KY, HS; x, 1) — C(E}, J§; %, 1) (29)

Equation (29) is the local form of the time-correlation
reciprocity theorem. The first two terms on the right-
hand side are representative of the differences in the
properties of the media present in the two states;
they vanish at these locations where )Zﬁ’,p(x, T) = ¥pi{X,
7) and ﬁ?,q(x, 7) = K [x%, 7) for all 7 € . In case the
latter conditions hold, the two media are denoted as
each other’s time-reverse adjoints. Note in this re-
spect that the time-reverse adjoint of a causal (effec-
tual) medium is an effectual (causal) one. Upon inte-
grating (29) over the subdomains of & where both
sides are continuously differentiable, applying Gauss’
divergence theorem to the resulting left-hand sides,
and adding the results, we obtain

j €1.; Vil C(ES, Hj?; x, 7) + C(EY, H; x, ©)] dA
xedD

= J [k 0, C(%;, — x5 ;, HY, HE; x, 1)
xeD
+ & at C(Zf’,p - X;,i» E:']» Ef,; X, T)] av
+f [—C(K3, H; x, 1) — C(ES, TP %, 1)
eD

— C(R?, H% x, 1) — C(E?, J%; %, ©)] dV (30)

Equation (30) is the global form, for the domain £, of
the time-correlation reciprocity theorem. Note that
the contributions from interferences hetween different
media present in & have cancelled and that the con-
tributions from the boundaries of impenetrable ob-
jects present in @ vanish in view of the boundary
conditions stated in section 3.

6. APPLICATION TO INVERSE PROBLEMS

In this section we briefly outline the relevance of
the reciprocity theorems (24) and (30) to inverse
problems. In this respect, we distinguish between in-
verse source problems and inverse constituency prob-
lems. In an inverse source problem the aim is to
reconstruct the volume current densities of radiating
sources present in some inaccessible domain in space
from the measured values of the radiated electro-
magnetic field in some other domain in space. The
constitutive parameters of the medium in which the
radiation takes place are assumed to be known. In an
inverse constituency problem (also denoted as inverse
profiling problem) the aim is to reconstruct the distri-
bution of constitutive parameters in some inaccess-
ible domain in space by irradiating the configuration
by known sources located in the embedding and
measuring the electromagnetic field response in some
other domain in the embedding; the constitutive pa-
rameters of the embedding are known. The two types
of problems are discussed separately.

Inverse source problem

In the inverse source problem the field in state a is
taken to be one that is radiated by the unknown
source distributions {J7, K7}. Let 27 < %, be their
spatial support. The radiated field {ET, H} is mea-
sured in some, accessible, observational domain 2%
< #°. The intersection of 2T and 2% is empty
(Figure 2). State b is taken to be a computational
state, denoted as the “observational” one. The corre-
sponding field {E?, H{} that would be radiated by
known sources with distributions {J{, K} is com-
puted and its interaction with the measured field in
2 is evaluated. In general, one could say that the
introduction of the observational state is repre-
sentative of the processing of the measured data.
Since only the interaction in 29 is considered, it
makes no sense to take the support of {JP, KT}
larger than 929, Finally, the medium in the observa-
tional state is taken to be either the adjoint (for the
application of (24)) or the time-reverse adjoint (for
the application of (30)) of the one in which the un-
known sources radiate.

The reciprocity relations (24) and (30) are now ap-
plied to the domain interior to the closed surface &
that is taken such that 2T and 2 are located in its
interior. Then, (24) leads to

f [C(K], HY; x, 1) — C(ER, JT; x, 1] dV
e DT
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Fig. 3. Configuration illustrative of the inverse constituency
problem: known sources in 9' irradiate the contrasting domain
2*° with unknown properties; the field is measured in 2? and on
g,

= j [CKKS, HT; x, 1) — C(E], I x, )] dV
x e D2

- f &, [CET, HY; x; 1) — C(E], H]; %, 1)] dA
e SR
(31)
and (30) leads to

J [CKT, A x, 1) + CED, I %, 0] dV
x e DT

J

= f [—C(K$, H]; %, 7) — C(E], J%; x, 1)] dV
€ 20

- J‘ ek,i,jvk[C(EiTs H-?; X, T) + C(E—?: HJT; X, T)] dA
€0

(32)

In (31) and (32) the left-hand sides contain the un-
known quantities, while the right-hand sides are
known provided that the necessary measurements
and evaluations are also carried out on %%, A solu-
tion to the inverse source problem is now commonly
constructed by taking for {J7, K} a sequence of N
linearly independent distributions with spatial sup-
port 9 and fixed, preferably broadband, time be-
havior (for example, a unit impulse). The correspond-
ing sequence of field distributions {EJ, H}} is com-
puted. Next, the unknown source distributions {J7,
KT} are expanded into an appropriate sequence of M
linearly independent space-time expansion functions
with spatial support 27; the corresponding ex-
pansion coefficients are unknown. Substitution of the
results into (31) and (32) and evaluation of the rele-

vant integrals lead to systems of linear algebraic
equations with the source expansion coefficients as
unknowns. When M = N, the system can be solved,
unless the pertaining matrix of coefficients is singular.
However, even if this matrix is nonsingular, it turns
out to be ill-conditioned in all practical cases. There-
fore one usually takes M > N, and a best fit of the
expanded source distributions is obtained by the ap-
plication of minimization techniques.

At this point, more must be said about the role of
&2, In practice, one is mostly interested in causal
media. Then it is advantageous to choose the fields in
(31) causal as well. Given the fact that %% surrounds
all sources, the integral over & can be replaced by
an integral over any sphere %, with radius A and
center at the origin such that &, surrounds &%
(This follows from application of (24) to the domain
between &, and &) However, for sufficiently large
values of A the causal field on &, is zero, since it
propagates with a finite maximum speed away from
the sources. Hence under these circumstances, the
surface integral in the right-hand side of (31) van-
ishes. A similar argument does not apply to the sur-
face integral in the right-hand side of (32), since in
(32) effectual (or anticausal) fields are involved in all
cases. This difference in the roles of the surface inte-
grals in (31) and (32) has been pointed out by Bo-
jarski [1983].

Inverse constituency problem

In the inverse constituency problem the field in
state a is taken to be the one that irradiates the
configuration. Let 2' < %3 be the spatial support of
the irradiating sources with known distributions {J¢,
Kj} and let the corresponding field be {E!, H'}. This
field is measured in some accessible, observational
domain 29 < #3. Let, further, 9° <= % be the
(inaccessible) domain in which the constitutive pa-
rameters are unknown. The intersections of 2° and
2' and of 2° and 2% are empty; %' and 2° may,
however, have points in common, or may even com-
pletely coincide (Figure 3). State b is taken to be a
computational state, denoted as the “observational”
one. The corresponding field {Ef, H} that would be
radiated by known sources with distributions {J%,
K%} in the known medium with the constitutive pa-
rameters {y7,, k,} of the adjoint (for the application
of (24)) or the time-reverse adjoint (for the appli-
cation of (30)) of the known embedding is computed
and its interaction with the measured field in 2 is
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evaluated. Since only the interaction in 2% is con-
sidered, it makes no sense to take the support of {J?,
K$} larger than 2°. The unknown constitutive pa-
rameters of 9° are denoted by {x{,, «},}, 2° being
the support of the differences {x;, — x5, x5, — x2,}
and (x, — Tpi» K4 — Ky ) for the application of (24)
and (30), respectively.

The reciprocity relations (24) and (30) are now ap-
plied to the domain interior to the surface %% that is
taken such that @', 2° and 22 are located in its
interior. Then (24) leads to

f [CKS, HY x, ©) — C(ES, J%; x, 1)] dV
€ Ds
= f [—C(KS, H}; x, 1) + C(ER, Ji; x, )] dV
el
X € 90 .
- f &,.;W[C(E], HY; x, 1) — C(ER, Hi; x, 1] dA
€N

(33)

in which

J; = 80 at C(X:,l - Xf,)p’ E;; X, T) (34)
is the equivalent contrast volume source density of
electric current in 27, and

K§ = 10, C(ic5, ; —

Jug? H_l,; X, T) (35)

is the equivalent contrast volume source density of
magnetic current in 2% In the same way, (30) leads to

j [C(K, HY x, 1) + C(EY, J3; x, 1] dV
X € Ds
=f [—C(K}, A% %, 7) — C(EP, Jt; x, )] dV
=X
+ j [—C(K}, Hi; x, 1) — C(EL, T®; x, 7)] dV
€ 20

- f gk,i,jvk[C(E::a ﬁ?; X, 7)]
X € 0

+ C(E}, Hi; x, 1)] dA (36)

in which
I =600, COt — 7, Bl % 0) (37)

is the equivalent contrast volume source density of
electric current in %, and

Ky =1 0,Cic ; — &3, Hs x, 1) (38)
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is the equivalent contrast volume source density of
magnetic current in &°.

In (33) and (36), the left-hand sides contain the
unknown quantities, while the right-hand sides are
known provided that the necessary measurements
and evaluations are also carried out on %% The eas-
iest way to address the inverse constituency problem
is to consider it as an inverse source problem for the
quantities {J5, K$}. Once values for these have been
obtained, the solution of the forward or direct source
problem with known values of {J{, Ki} and {J%, K3}
yields the values of {E}, H!} in 2* and the temporal
deconvolution of either (34) and (35) or (37) and (38)
yields, since {x{,, k?,} are known, the values of {0505
K5 ;1. As to the role of the surface integrals over %
in the right-hand sides of (33) and (36), the same
remarks as for the inverse source problem apply.

To conclude our investigation, we want to empha-
size that the uniqueness and the existence of solu-
tions to both the inverse source and the inverse con-
stituency problem are, for the larger part, at the
moment open questions.

7. CONCLUSION

Time-domain reciprocity theorems for the electro-
magnetic field in linear, time-invariant, and locally
reacting media have been derived via a full space-
time method. Inhomogeneous, anisotropic and arbi-
trarily dispersive media are included. One of the the-
orems is of the time-convolution type, the other is of
the time-correlation type. The application of the two
theorems to inverse source and inverse constituency
problems is discussed.

Acknowledgment. Dedicated to J. van Bladel, friend and col-
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