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A FINITE-ELEMENT METHOD FOR COMPUTING THREE-DIMENSIONAL ELECTROMAGNETIC FIELDS
IN TNHOMOGENEOUS MEDTA

Gerrit Mur and Adrianus T. de Hoop

Abstract — A finite-element method is presented
that is .particularly suited for the computer modeling
of three-dimensional electromagnetic fields in inhomo-
geneous media. It employs a new type of linear vectori-
al expansion functions. Across an interface where the
constitutive coefficients are discontinuous, they have
the following properties: (1) the continuity of the
tangential components of the electric and the magnetic
field strengths is exactly preserved, (2) the normal
component of the electric and the magnetic field
strengths are allowed to jump and (3) the electric and
the magnetic fluxes are continuous within the pertain-
ing degree of approximation. The system of equations
from which the expansion coefficients are obtained is
generated by applying a Galerkin-type weighted-residual
method. Numerical experiments are described that illus-—
trate the efficiency of our elements, and the computa-
tional costs of the method.

INTRODUCTION

Because of its flexibility, the finite-element
method seems to be the most suitable ome to compute
electromagnetic fields in inhomogeneous media. Present-—
ly available programs [1, 2] are, however, limited to
media having a low contrast and to simple geometries.
Studying the expansion functions that are used it is
easily shown that they do not permit the fluxes of the
electric and the magnetic field to be continuous at an
interface where the constitutive coefficients are dis-
continuous. In the present paper we present a type of
element that exactly accounts for the continuity of
the tangential components of the electric and the mag-
netic field strengths across interfaces where the con-
stitutive coefficients are discontinuous, and that per-
mit the fluxes of the electric and the magnetic field
to be continuous at those interfaces. Elements that
exactly preserve the continuity of the tangential com-
ponents have been proposed by Nédelec [31, and have
been used by Bossavit and Vérité [4, 5] for solving
eddy-current problems. The disadvantage of their ele-
ments, however, is that they are not consistently of a
certain degree of approximation. The elements used by
Bossavit and Vérité, for instance, permit a first-order
interpolation of the field in the intérior of the
tetrahedron in which they apply, but yield only an
approximation of ordér zero along the edges of this
tetrahedron. Our elements are comsistently linear, i.e.
they yield a linear approximation of the field both in-
side each tetrahedron and along its edges and faces.

THE EXPANSION FUNCTIONS

The geometrical domain over which the finite-ele-
merit method is applied, is subdivided into adjoining
tetrahedra. In this section, we preséent the type of
consistently linear vectorial expansion functions that
will be used over each tetrahedron.

Using the right-handed, orthogonal Cartesian coor-
dinates {x,y,z}, the position vectors of the vertices
of a tetrahedron T are denoted by {50,34,32,53}. The
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otitwardly directed vectorial areas of the faces of T
are then given by (Fig. 1)

Ag = (xy xx,+x, xxr,+1,%x1)/2, ete. (1
The volume of T is given by

Vo= (g - xg) % (g~ x)) (g - /6. (2)
Let

Iy 7 (gt xy txy g/ 3)

be the position vector of the barycenter of T. Then the

linear scalar function of position ¢i(5j that equals
unity when r = x; (i=0,1,2,3) and that equals zero in
the remaining three vertices of the tetrahedron can be

written as

9,(x) = 1/4 - (x - r, )-A /3V. (4)

. 3 . 3
. Since r = Ei=0 ¢i(£)£i; with 2i=0 ¢i(£) =1,

{65s0,5¢,,¢5} are nothing but the barycentric coordi-

tates in T. Using (4) our vectorial expansion funtions
w. .,.are taken to be
~1,]

w, (1) (i,5=0,1,2,3 i#i).  (5)

G RENCIWRS

It is easily verified that {E% .} has the following
ks

properties: (a) v 3 is a linear vector function of
b

position in T, (b) the projection of it on an edge
vanishes on all edges of T apart from the one joining
the vertices x; and r. and (c) ¥, 5 varies linedrly

b
along the latter edge such that w. .(r.) = 0, while it
is normalized such that 2537

y,i’j(r_i)'(gj -r)o=1l. (6)

The divergence and the curl of Wy i are obtained as
. >

. 2
Tow; (D) = &AL/ (V) @)

T ) = A xA/GDE, (8)

respectively., Due to the normalization (6), the expan-—
sion functions that originate from the same vertex af a
common edge of two or more adjoining tetrahedra have
the same tangential behavior along this edge and over a
common face, if present. In this way, expressing the
electric and the magnetic field strengths in terms of
{gi j}’ the continuity of the tangential component of
s

these fields along interfaces is guaranteed. Observe

that two expansion functioms, viz. w. 3 and LI do
> >

originate from each edge as compared with the single
one in the expansion used by Bossavit and Vérité (Fig.
2). It can easily be shown that their expansion func~
tions are, apart from a constant factor, given by

We » 7 W. .o
—1,] —J,1
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Fig. 1, Tetrahedron T with outwardly directed vectori-
al areas of its faces.

Fig. 2.

Degrees of freedom in a tetrahedron.

When reT, any vectorial quantity whose tangential com-
ponents are to be continuous at interfaces, in our
case the electric field E and the magnetic field

strength H, is expanded as
_ 3 3 "
E= 2i=0 2j=0 ®,1 %5 (9
i#]
and
3 3
= W . 10
B = im0 Lie0 By,5 %, (10
i#j
where e 5 and‘hi 3 are the unknown expansion coeffi-
s b

cients. In view of the normalization (6) of the vecto-
rial expansion fumctions, the quantities {ei .} and

{hi;j} can be considered as the ccmponents.o% Eﬂii) and
E(Ei) along a set of base vectors formed by the edges
(r. - Ei) that have I, as common vertex. Note that
{-éj/BV} are the set of base vectors reciprocal to

{gj -,k
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THE METHOD OF WEIGHTED RESIDUALS
In the complex-frequency or s-domain the electro-

magnetic field equations for an isotropic medium are
written in the form

YxH-Y, E=J, : 1)

v x

o]

+2, H= K, » ’ (12)

where YT = ¢ + se and ZL = su (0 = conductivity,

e = permittivity, B = permeability). At a surface S of
discontinuity in the properties of the medium we have
the continuity conditions

nxE
continuous across S, (13)
nxH
and
Y, E
continuous across S. (14)
E'ZLE

In (13) and (14), n denotes a unit vector along the
normal to S.

In the method of weighted residuals, both E and H
are, in each tetrahedron, expanded using (9) and (10).
Subsequently, (11) and (12) are multiplied scalarly by
some weighting function and integrated over a tetra-
hedral domain.

Fig. 3. Two adjacent tetrahedra having a triangular
interface in common.

In the Galerkin method we choose {yi j} as the
»

weighting functions. With this choice, and assuming
the medium properties, as well as the source densi-
ties, to be constant in the interior of each tetrahe-

dron, all integrations can be carried out analytical-

ly. As a result, we obtain a system of linear rela-
tions between the local expansion coefficients. In the
finite-element method [6] these relatioms are properly
combined to yield the global system of equations to

be satisfied.

We shall now show that, within our degree of

approximation, the continuity of the fluxes associated
with (14) is also satisfied. To do this we study the
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1 and T2

(Fig. 3) in common. In view

solution in two adjacent tetrahedra T having a

tfiangular interface S1 5
2
of the expansion functions, equations (13) are exactly
satisfied. Both in T, and T2’ we multiply (11) scalarly
1,2 that is normal to S]’2

tegrate the resulting expressions over SI 9 Then,
E

by the unit vector n and in-

applying Stokes's theorem we obtain

§Cl zg-ldwjjsl (Y, | E, *+ J)dA
2

) B2 M1 2

s

(15)

M,

) 2y o (g, g By + 35044,

where C1,2

is the unit vector along the tangent to C

is the closed boundary curve of S and T

1,2

1,2 in the

direction of circulation that forms a right-handed
system with LAY If the approximations to E and H

. s
would exactly satisfy (11) and (12), the difference
between the two right—handed sides of (15) would wvanish
exactly since H*T is exactly continuous through the
choice of our expansion functions. Now, (11) and (12)

o ‘1: . X .. 2 . .
are satisfied up to order 0(d”), where d is the maximum
dimension of a tetrahedron, and hence (15), and conse-
quently the continuity of the fluxes, are expected to

be satisfied up to order O(dz). In the same way the
continuity of the magnetic flux can be proven starting
from. (12).

RESULTS FOR A TWO-DIMENSIONAL CONFIGURATION

In order to investigate the usefulness of our ele-
ments we have also written computer codes for the
simpler two-dimensional, electromagnetic fields in a
cylindrical configuration whose properties are inde-
pendent of z. The two-dimensional fields then separate
into an E-polarized part in which {EZ’HX’Hy} occur and

an H-polarized part in which {HZ,EX,EY} occur. The

method of salution was applied to the case where in the
domain O<x<l, O<y<l and in a homogeneous medium with
e=ens Wiy, 0=0, the field comgonents of the time-har-

monic field with s=jw, w=47*10 , were prescribed as

| =t
]

sin(mx)sin(ry)i ,

k==

= (jw/muo) s;in(Trx)cos('iry)_i_x (16)

_(jn/wuo) cos(nx)sin(ﬂx)iy,
the expressions further entail
J = JO sin(nx)sin(ﬂy)iz, K =0, (7

with JO

Ez=0 was specified. The region was divided into iso-

= j(21rZ - wzeouo)/muo. The boundary condition

celes rectangular triangles, two triangles occupying a
square region of dimension h * h. The system of equa-
tions was solved using a direct method. In Table 1,
the relative error in the numerical results near the
center of the domain and the computation time are given
for Nédelec elements and for our elements. Comparing
the relative errors while taking into account the com—
putation times it is clear that our elements yield
more accurate results with less computational effort.
Note that, for the problem at hand, we have V-E=0 and
V+H=0. This suggests that using expansion functions
with zero divergence, as Nédelec's are, would be pre-
ferable. Our results prove the contrary. A series of

other numerical experiments has been carried out. They
proved the efficiency of our expansion functions for
computing fields in inhomogeneous media. In one of
those experiments we have taken into account a linear
variation of the properties of the media and the source
density distribution over a triangle. It turned out
that these linear variations did not improve the accu-
racy of the results as compared with the approximation
by a constant.

Table 1. Relative errors in Z and computation time T
for Nédelec elements and our elements for a test
case (E-polarized electromagnetic field in a domain
of Imxlm), symmetric mesh, E-field error.

grid size Nédelec elements Our elements
h(m) rel.err (%) T(s) rel.err(%) T(s)
1/4 50 3.0 1.7 3.5
1/8 10 4.5 .25 8.9

1/16 2.5 19.7 - -

RESULTS FOR A THREE-DIMENSIONAL CONFIGURATION

As ca first test .of our three-dimensional code we
have applied it to the case where in the domain 0O<x<],
O<y<1, 0<z<0.1 and in a homogeneous medium with e=eqs

U=l 0=0, the field components of the time-harmonic

field with s=juw , w=4w*108, were prescribed as is given
in (16) and (17), the remaining components of the field
being zero. The boundary condition n X E=Q was used,
but any other combination of boundary conditions con-
sistent with (16) could have been used. The region was
divided in subregions of dimension h X h x 0.Im, each
of these subregions being subdivided into six tetrahe-
dra. In Table 2 we present, as a function of the grid
size h, some results with regard to the number of un~
knowns N, the computation time, the storage require-
ments and the relative error in the final result. The
relative error was studied at a diagonal plane in the
configuration. In such a plane the solution has the
most rapid variation in space (one period of a sine)
and hence our results for the relative error can be
considered as a worst case result. All computations
have been carried out on an Amdahl 470V/7B computer
using the SEPRAN finite-element package [7].

Table 2. Computational requirements and maximum
relative error in the results for a three-dimensional
test problem.

number of computation storage

grid size rel.err.
hm) unknowns time T(s) (Mbyte) (%)
1/2 112 2 1.0 30
1/4 448 15 1.5 12
1/8 1792 215 5.5 5
CONCLUSION

We have presented a new type of consistently
linear vectorial expansion function that exactly ac-
counts for the continuity of both the tangential com-
ponents of the vector functions approximated across
interfaces and the continuity of the normal component
of the fluxes. In a numerical experiment, a two-dimen—
sional version of these functions proved to yield very
accurate results within a relatively small computation—
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al effort. The three-dimensional version of our code
also produces excellent results but in this case the
computational costs, especially when using a direct
method for solving the system of equations, are quite
considerable., In order to reduce the computational
costs, iterative techniques will have to be used for
the latter. An additional advantage of the method des—
cribed is that, because of the nature of the expansion
functions; it is ideally suited for a combination of it
with the Boundary Element Method.
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