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configuration with a plane boundary
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ABSTRACT

The space-time acoustic wave motion generated by
an impulsive point source in a solid/fluid configuration
with a vertical plane boundary is calculated with the aid
of the modified Cagniard method. Two types of sources
are considered in detail, viz. (1) a point source of ex-
pansion (model for an explosive source), and (2) a point
force parallel to the vertical interface (model for a me-
chanical vibrator). Numerical results are presented for
the transmitted scalar traction in the fluid in those re-
gions of space where head wave contributions occur.
There is a marked difference in the time response ob-
served for the two types of sources and for the different
positions of the receiver in the fluid with respect to the
position of the source in the solid. These waveform dif-
ferences are important when the transmitted wave in the
fluid is used to determine experimentally the elastic
properties of the solid. Scholte waves are observed only
when the source is close to the fluid/solid interface. As
compared with the traditional Fourier-Bessel integral
transform method of handling this problem, the compu-
tation time with the method presented here is consider-
ably less.

INTRODUCTION

Seismic waves are one standard diagnostic tool used to de-
termine the mechanical parameters (volume density of mass,
compressibility, elastic stiffness) and the geometry of subsur-
face structures. More specifically, in vertical seismic profiling
seismic waves are usually generated in the formation (solid),
while signals are received in a fluid-filled borehole (Hardage,
1983). Although vertical seismic profiles (VSPs) are usually
recorded with clamped geophones, the pressure response of
the fluid is also of interest, e.g., when studying the effect on the
geophone response or when investigating the possibility of
collecting the data with hydrophones. In this kind of measure-
ment transfer of the seismic waves across the boundary of a
solid and a fluid always occurs, no matter how simple or how

complicated the structure being investigated. Here we investi-
gate the features of this wave transfer in the simplest possible
case where there is only a single vertical boundary between a
semiinfinite solid and a semiinfinite fluid. As such, the configu-
ration serves as a canonical problem. Results of the calcula-
tion clearly show the relative importance of several different
parameters on the received signal. Therefore, the results can
serve as a guide to the interpretation of experimental data
acquired in more complicated situations met in practice.

The seismic source is assumed to be located in the solid,
while the acoustic wave is observed in the fluid. The case
where the source is located in the fluid (borehole) and the
acoustic wave is also observed in the fluid is investigated in a
separate paper (de Hoop and van der Hijden, 1984).

The standard approach to the problem is to employ a Fou-
rier transform with respect to time, a Fourier series expansion
with respect to the angular variable, and a Fourier-Bessel
transform with respect to the radial variable (the latter two in
the plane parallel to the boundary). To obtain numerical re-
sults, the relevant inverse transforms have to be evaluated
numerically, with possible use of asymptotic evaluation in cer-
tain regions of space-time. This set-up of the problem is simi-
lar to that shown in Aki and Richards (1980, p. 200) for a
fluid/fluid configuration. We solve the problem by applying
the first author’s modification of Cagniard’s method (de Hoop,
1960, 1961; see also Miklowitz, 1978, p. 302, and Aki and
Richards, 1980, p. 224). The answer has a fairly simple form:
the time convolution of the input signal of the source and the
explicitly obtained expression, in the form of a bounded inte-
gral, for the space-time Green’s function of the fluid/solid con-
figuration. The space-time Green’s function (or “systems re-
sponse”) clearly shows the features of the time behavior of the
elastic/acoustic wave fields at different locations, and the de-
pendence of these wave fields on the mechanical parameters
involved. The computational results can also be used as a
check on the accuracy of the numerical procedures employed
to evaluate the inversion integrals in the standard treatment of
the problem. These inversion techniques are the only available
procedure that can be used if the materials have an arbitrary
loss mechanism, or if the geometries involve curved surfaces
such as boreholes.
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DESCRIPTION OF THE CONFIGURATION

We investigate theoretically the pulsed elastic wave motion
in a two-media configuration with a vertical plane interface.
One of the media is a homogeneous, isotropic, perfectly elastic
solid; the other is a homogeneous, ideal fluid. The source is
located in the solid. The source generates an impulsive wave
motion that is partly reflected at and partly transmitted across
the interface. We determine an expression for the acoustic
pressure of the transmitted wave at any point in the fluid, and
at any time, with the aid of the three-dimensional (3-D}) ver-
sion of the modified Cagniard method.

To specify position in the configuration (Figure 1), we
employ Cartesian coordinates (x; = x, X, =y, X3 = z) with
respect to a Cartesian reference frame with origin O and three
mutually perpendicular base vectors of unit length (i; =1i,,
i, =1, i3 = i;). In the indicated order, the base vectors form
a right-handed system. The z-axis is chosen normal to the
vertical interface between the two media. (This choice deviates
from borehole practice where the z-axis is usually taken along
the axis of the borehole, but it is the customary choice for
horizontally layered configurations.) The seismic source is lo-
cated at x =0, y =0, z = hy with Ay > 0. The nature of the
source will be specified later. The receiver is located at x = d,
y =0, z= —hg, with d > 0, hg > 0. Additional properties of
the configuration are listed in Table 1.

The time coordinate is denoted ¢. It is assumed that the
source starts to act at the instant ¢ = 0 and that prior to this
instant the entire configuration is at rest.

Seismic
Source

/
Acoustic
Receiver

FiG. 1. Solid/fluid configuration with seismic source in solid
and acoustic receiver in fluid.

DESCRIPTION OF THE WAVE MOTION
IN THE CONFIGURATION

In the solid, the elastic wave motion consists of super-
position of incident and reflected waves. The incident wave is
the wave that would be generated by the source if the solid
were of infinite extent. The incident wave field can be regarded
as a proper superposition of P-, S¥-, and SH-waves, with the
decomposition into these three modes being carried out with
respect to the interface so that ¥ means perpendicular to and
H means parallel to the interface. The amplitudes of the differ-
ent wave field constituents are determined by the nature of the
source. The incident wave is defined in all space, and in the
domain 0 < z < hy; its constituents travel in the direction of
decreasing z. The reflected wave is defined in the domain
0 < z < o, and it, too, consists of a superposition of P-, SV-,
and SH-waves. Its constituents travel in the direction of in-
creasing z. In the fluid, there is a transmitted acoustic wave. It
is defined in the domain — oo < z < 0 and travels in the direc-
tion of decreasing z. The amplitudes of the reflected P-, SV-,
and SH-waves in the solid and of the transmitted wave in the
fluid follow from the application of the boundary conditions
at the interface.

In the modified Cagniard method we first calculate the
wave constituents in the transformed domain, i.e., after having
carried out a one-sided Laplace transform with respect to time
(with real, positive, transform parameters s) and a Fourier
transform with respect to the coordinates x and y parallel to
the interface (with transform parameters so and sP, respec-
tively). In our notation, we write the relevant transforms for a
component of the particle displacement:

wx, y, z, §) = f exp (—stu(x, y, z, t) dt, 1)
0

fi(a, B, z, 8) = Jw dy Jw exp [is(ax + By)]

x i(x, y, z, $) dx, )]

and, relative to equation (2), inversely

wx, v, z, 8) = (5/2m)? on dp J‘w exp [—is(ux + By)]

x t(a, B, z, s) da. 3)

In equation (3) we have taken into account that the transform
parameters in equation (2) are sa and sp.

Each wave consituent is cast in a form that reflects its basic
properties. Thus, the P-waves and the wave in the fluid are
curl free; the SV- and the SH-waves are divergence free; and
the SH-wave has no component of the particle displacement
perpendicular to the interface. The easiest way to obtain the
expressions is to use the relevant scalar and one-component
vector potentials (Stratton, 1941, p. 349).

Incident P-wave

The transform-domain representation of the particle dis-
placement of the incident P-wave is written as

(@ ayf, a "} = {—ia, —iB, vp}Ap exp [syp(z — ho)], )

where




Seismic Point Source, Solid/Fluid Boundary 1085

vp = (0® + B2 + 532  with Re (yp) = 0. (5)

Equation (4) takes into account that the incident P-wave is
rotation free and that it travels with speed c¢p toward the
interface. In the calculations we also need the xz, yz, and zz
components of the stress t. They are obtained by substituting
the expressions for the particle displacement into the constitu-
tive relations of the solid. For the incident P-wave, they have
the form

{15 00 1) = {—iave, —iByp, 355 + @ + %}
x 2pusAp exp [57p(z — hy)l. (6)
Incident S¥V-wave
The transform-domain representation of the particle dis-
placement of the incident SV-wave is written as
{ﬁ;‘ SV, a;; SV, l'lvi’ SV}
= {—iays, —iPys, a® + B*} 4§y exp [sys(z — hp)], (7)
where
vs= (02 + P2+ s2)? withRe (y9>0. = (8)

Equation (7) takes into account that the incident SV-wave is
divergence free and that it travels with speed c¢g toward the
interface. The xz, yz, and zz components of the stress t of this
wave are

{'-z SV "’l SV ~z N2

= {—ia(3s§ + o® + B?), —if(355 + o + B?),
(@® + B?)ys)2usAly exp [sys(z — h)]. 9

Incident SH-wave

The transform-domain representation of the particle dis-
placement of the incident SH-wave is written as

{”l SH ‘71 SH, i S} = {—1B, ia, O}A.iS‘H exp [sys(z — hp)l. (10)

Equation (10) takes into account that the incident SH-wave,
too, is divergence free and that it travels with speed cg toward
the interface. The xz, yz, and zz components of the stress of
this wave are

zi, SH zi,SH i, SH
(sz > Vyz 5 T2z

= {—iBys, iays, O}psAly exp [svs(z — hp)l. (1)
Reflected P-wave

The transform-domain representation of the particle dis-
placement of the reflected P-wave is written as

X *

(i P i e P} i

= {—ia, —iB, _YP} [Rpp Ap €xp (—syp hy)
+ Rpg Ay exp (—syshr)] exp (—sypz). (12)

Equation (12) takes into account that the reflected P-wave is
rotation free and that it travels with speed cp away from the
interface. The xz, yz, and zz components of the stress of this
wave follow as

~rP rP“'rP
Tz yz’ Ty

= {foyp, iByp, 355 + a® + B?}2us
X [Rpp A; exp (—syp hy)
+ Rpg Ay exp (—syshr)] exp (—sypz). (13)

Reflected SV-wave

The transform-domain representation of the particle dis-
placement of the reflected SV-wave is written as

{ﬁ;,SV, l];' SV, er’SV}

= {ioys, iBys, o + 2}
X [Rsp Ap exp (—syphy)
+ Rgs Asy exp (—syshy)] exp (—sysz). (14)
Equation (14) takes into account that the reflected SV-wave is
divergence free and that it travels with speed cg away from the

interface. The xz, yz, and zz components of the stress of this
wave have the form

{'*r SV ~r SV el sV
s vzz

= {—ia(3s§ + o® + P?), —iB(3s3 + o® + p2),
— (a® + B?)ys}2us[Rsp Ap exp (—syphy)
+ Rgs Afy exp (—syghr)] exp (—sysz). (15)

Reflected SH-wave

The transform-domain representation of the particle dis-
placement of the reflected SH-wave is obtained as

{[I’* SH r, SH, u~rz, SH}

= {—iB, i, 0} A5y exp [—sys(z + hp)]. (16)

Equation (16) takes into account that the reflected SH-wave,
too, is divergence free and that it travels with speed cg away
from the interface. Further, the amplitude is directly obtained
by inspection of the boundary conditions at the interface, ob-
serving the decoupling of this wave from the P- and SV-waves.
The xz, yz, and zz components of the stress of this wave are

~r,SH zr,SH =r,SH
{sz ’ Tyz » Tz

Table 1. Properties of the solid/fluid configuration.

Solid Fluid
Domain D, D,
z coordinate 0<z< o0 —ea<z<0
Volume density of mass ps Py
Constitutive parameter(s) Mg (Lamé coefficients) K (bulk meodulus

of compression)

Wave speeds cp=I\ +2u)/ p 1% e = (K/ps)*

cg = (ulp )%
Wave slownesses = 1/cp; 55 = 1/cg sp=1/¢,
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= {ifys, —iays, O}PSA.iSH exp [—sys(z + hyp)]. (17)

Transmitted fluid wave

The transform-domain representation of the particle dis-
placement of the transmitted wave in the fluid is written as

{al, af, af} = {—ia, —iB, v,}
x [Typ Ap exp (—syphy)
+ Tys Asy exp (—syshg)] exp (sy,2), (18)
where
v, =(a® + B> + s)"? with Re (y,) = 0. (19)

The traction in the fluid, ie., the opposite of the pressure, is
obtained as

V= 5Py [TJ’P A; exp (—syphy)
+ Tps Ay exp (—syshg)] exp (sy,2). (20)

In the expressions for the reflected waves we have taken
into account that P- and S¥V-waves do not create SH-waves at
the solid/fluid interface, and vice versa. In the transmitted
wave we have taken into account that the incident SH-wave
generates no transmitted wave in the fluid. Next, we determine
the as yet unknown reflection and transmission coefficients
Rpp, Rps, Rsp, Rgs, Tpp, and Ty by applying the boundary
conditions that are to be satisfied at the solid/fluid interface.

DETERMINATION OF THE REFLECTION
AND TRANSMISSION COEFFICIENTS

The boundary conditions at the solid/fluid interface are (1)
continuity of the normal component of the particle displace-
ment, (2) the equality of the normal component of the surface
traction in the solid and the (scalar) traction in the fluid, and
(3) the vanishing of the tangential components of the surface
traction in the solid. In the transform domain, these con-
ditions lead to the equations

lim (@5 ° + 445V + @0 F + @0 5) =lim 47, (21)
z|0 z10

lim (#5F + #5 + 10 4+ 3.5) = lim ¥/, (22)
z|0 z10

lim @ + 5% + 37 + 1) =0, (23)
z]0

and

lim (& + 85 + 1 + 7,5 =0. (24)
z|0

Substitutfng the relevant expressions in these equations, and
keeping in mind that the resulting equalities must hold irre-
spective of the values of A% and A%, , we obtain

Rpp = {PfYPS§/4Ps - Yf[(%s.% + a? + p?)? k

+ (@ + B2y vs1}/Ascu (25)
Rep= — 248+ a® + B, vp/Ascu (26)
Trp = sz(§s% + o + BAYp/Ascas 27

Rps = —2(a? + B?) (355 + o + By, vs/Ascn>  (28)
Rgs = _{PfYPs§/4Ps + vy [(3s3 + o + p2)?
+ (@ + BAypvs1H/Ascas (29

Tps = s3(a® + B?)yp¥s/Asca (30)
where
Agcn = pre s&/Ap, + Yf,[('%‘5§ + a? + p?)?
— (@® + B*)ypvs] (31)

is the “Scholte-wave denominator.” The Scholte-wave de-
nominator is associated with surface waves along a solid/fluid
interface (Scholte, 1948, 1949; see also Cagniard, 1962, p. 245,
and Miklowitz, 1978, p. 168).

The transform-domain expressions for the wave motion in
the configuration are now fully determined, once the incident
seismic waves are specified. The transformation of these ex-
pressions to the space-time domain is carried out in subse-
quent sections. Explicit results are given for the scalar traction
in the fluid for two types of seismic source, viz., (1) a point
source of expansion (model for an explosive source), and (2) a
point force parallel to the vertical interface (model for a me-
chanical vibrator).

THE TRANSFORM-DOMAIN INCIDENT
WAVE AMPLITUDES

We now determine the transform-domain expressions for
the amplitudes Ah, A%, , and ALy of the incident wave. Two
types of seismic sources are considered: (1) a point source of
expansion (model for an explosive source), and (2) a point
force parallel to the vertical interface (model for a mechanical
vibrator).

Point source of expansion

The explosive source is modeled by a point source of ex-
pansion. The transform-domain expression for the particle dis-
placement is

{ﬁi, ﬁ;, alz} = _{_iaa '"iB’ ’—FYP} (&)V/stP)
x exp [Fsyp(z — hq)l, (32)

where the upper signs apply to z > h; and the lower signs to
z < hy, and &, = ¢y (1) is the time rate of injected volume at
the source. By comparing equation (32) with equations (4), (7),
and (10), we obtain

b= —bv/257s, (33)
Asy =0, (34)

and
Aly = 0. (3%

This type of source generates a P-wave, and no SV- or SH-
waves.

Point force parallel to the interface

The action of a mechanical vibrator is modeled by a point
force acting in the x direction (vertical force in the presence of
a vertical boundary in borehole seismics). The transform-
domain expressions for the components of the particle dis-
placement are (Achenbach, 1973, p. 99; Aki and Richards,
1980, p. 73; Miklowitz, 1978, p. 89)
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i = (Fy /2sp) {— 05 " exp [Fsyp(z — hy)]
+(a® + s3)ys P exp [Fsys(z —hp)l), (36
@, = (Fy/2sp) {—aPys ' exp [Fsyp(z — hq)]
+ afys * exp [Fsysz — b1} 37
and
@ = (Fy/2sp){ +ia exp [Fsvp(z — hy)]
+ io exp [Fsys(z — hp)l} (38)

where the upper signs apply to z > hr and the lower signs to
z < hy, and Fy, = Fy (1) is the applied force. By comparing
equations (36) through (38) with equations (4), (7), and (10), we
obtain B

Ap = —iaFy[25pVp, (39)
Ak, = iaFy 2sp,(a® + BY), (40)

and
Al = iBFy 2spscd vs(0® + B2). (41)

This type of source generates P- and SV-waves as:.well as
SH-waves.

SPACE-TIME EXPRESSION FOR THE SCALAR
TRACTION IN THE FLUID DUE TO A POINT SOURCE
OF EXPANSION IN THE SOLID

To arrive at the space-time expression for the scalar traction
in the fluid ©/ (i.e., the opposite of the pressure) due to a point
source of expansion in the solid, we rewrite equation (20) at
the position of the receiver x =d, y =0,z = —hg as

¥ =s2d, 206, (42)

where, as a result of equation (27) and equations (33) through
(35), we have

pylasi+a?+ B
252 c2 Agey
x exp [—s(yphr + Yr he)]. 43)

Starting from equation (43), the expression for 14 ¢ is ob-
tained with the aid of the modified Cagniard method. This
method accomplishes the transformation of the integration
with respect to o and B [cf., equation (3)]

6= —(s/2m)? j " ap r ot e’ B

%ﬁ.G_

2.2
o 25*c Ascr

x exp { —s[iax + By + yphr + Y, hel} do (44)

into the real integration

6., 8= J‘ exp (—st[(+, T dt, (45)
T

where I'( -, 1) is an expression that does not depend upon s

and where the dot stands for the spatial variables. The unique-

ness theorem of the Laplace transform with real, positive

transform parameter s then ensures that (Lerch’s theorem, see

Widder, 1946, p. 63),

0 hen — T
r#G(-,t)={ when —o0 <t < T, )

T'(-,7) when T <1t < 00.

Here, T is the arrival time of the transmitted wave. The actual
transformations follow the pattern of the modified Cagniard
method for 3-D wave motion (see Appendix A). Equation (42)
then leads to the final result

1
T’(-,t)=5?f¢v(t~1‘)t£'6(-,r) dr 47)
0
when 0 <t < c0.

SPACE-TIME EXPRESSION FOR THE SCALAR TRACTION
IN THE FLUID DUE TO A POINT FORCE PARALLEL
TO THE INTERFACE IN THE SOLID

To arrive at the space-time expression for the scalar traction
in the fluid due to a point force parallel to the interface in the
solid, we rewrite equation (20) at the position of the receiver
x=d,y=0,z= —hgas

= F, (5 + 155, (48)

where because of equations (27) and (30) and equations (39)
through (41) we have

ia(1s2 + a® + BYp;

f=—
? 25p,c§ Ascu
x exp [—s(yphr + Y, he)l, (49)
and
2f,G _ ia'YP’YS pf . h h 50
Tsi —ZSZps c_—§ Ascn exp [—s(yshr + 7, hr)l (50)

Using arguments of the same type as in the previous section,
the space-time expression for the scalar traction in the fluid is
obtained as

(e, =0 Jth(t —O[h L0+, D] dn, (5D
0

when 0 < ¢ < o0, where the dot stands for the spatial vari-
ables, and 14 ¢ and ©£¢ are constructed with the aid of the
modified Cagniard method.

NUMERICAL RESULTS

We now present some curves showing v/ as a function of ¢,
computed according to equations (47) and (51) with the appro-
priate expressions for the Green’s function contributions.
These curves represent, for the model configuration at hand,
the synthetic seismograms that apply to VSP configurations.
For details of the numerical methods employed, we refer to de
Hoop and van der Hijden (1984) [in that paper an erroneous
factor of 2 is present in equation (B-3); as a consequence the
vertical scales in the figures representing the numerical results
have to be divided by 2]. In particular, we want to illustrate
how the offset of the source from the boundary influences the
received pressure waveforms in the fluid. To this end, synthetic
waveforms are shown that are recorded by a receiver at a
depth of 1 600 m, or by an array of receivers at depths extend-
ing from 1000 m to 1600 m. The seismic source will be
Jocated at offsets of 10, 400, or 1 000 m from the boundary.
The results show that sources at different offsets from the
boundary can give rise to very different types of recorded
waveforms in the fluid. In borehole seismics, the question of




1088 de Hoop and van der Hijden

7.5

50F

V

| (pa) ——
(=
u
? 1600 m

25t S
Scholte
-5.0}
-75 { t L a 1 L L
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Time (s)—»

FIG. 2. Scalar traction t/ in the fluid due to an impulsive point
source of expansion in the solid as a function of time. The
source pulse has a maximum value max | ¢, | = (T/2r)?, and
its duration is T = 0.1 s. Further, ¢, = 3 500 m/s, cg = 2 000
my/s, cd =1500m/s, p,/p; = 2.5,d = 1 600 m, h = 10 m, and

hg = 0.
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FiG. 3. Scalar traction t/ in the fluid due to an impulsive point
source of expansion in the solid as a function of time. The
source pulse has a maximum value max |, | = (T/2n)?, and
its duration is T = 0.1 s. Further, ¢, = 3 500 m/s, ¢g = 2 000
m/s, ¢, = 1500 m/s, py/p, = 2.5, d = 1600 m, hy =400 m,
and hy = 0.

how strongly the Stoneley wave (or tube wave) in the borehole
is excited 'is of special interest. In our planar model, this
question translates into investigating how strongly the Scholte
wave is excited.

Strictly speaking, it is difficult to extrapolate the con-
clusions pertaining to the planar interface considered ‘here to
the ones for a circularly cylindrical interface as in borehole
configurations. It can be expected that the phenomena in the
two configurations show similar characteristics in the case
where the spatial pulse widths of the signals are small com-
pared to the radius of curvature of the interface.

In our model we used the following parameters: ¢, = 3 500
m/s, cg =2 000 m/s, ¢, =1 500 m/s, p,/p, = 2.5. We put the
acoustic receiver in the fluid infinitely close to the solid/fluid
interface, i.e., at iy = 0. For the time variation of the source

0.50 1om ‘1
i T
F 1S
3
0.25 ©
R
< 0
a.
2 L
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=
-0.25 P S Scholte
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. . ) . . . .
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F1G. 4. Scalar traction 1/ in the fluid due to an impulsive point
force parallel to the interface in the solid as a function of time.
The source pulse has a maximum value max |F, | = (T/2r)%,
and its duration is T = 0.1 s. Further, cp = 3 500 m/s, ¢g =
2000 m/s, ¢, =1 500 m/s, p,/p, = 2.5, d =1 600 m, hy = 10
m, and hy =0.

010l 400 M =—>
T
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FIG. 5. Scalar traction t/ in the fluid due to an impulsive point
force parallel to the interface in the solid as a function of time.
The source pulse has a maximum value max | F, | = (T/2r)?,
and its duration is T = 0.1 s. Further, ¢, = 3 500 m/s, ¢y =
2000 m/s, ¢, = 1 500 m/s, p,/p, = 2.5,d = 1 600 m, hy = 400
m, and /i, = 0.

strengths ¢ (t) and F (1) (as introduced in the transform-
domain incident wave amplitudes discussion), we used the
four-point optimum Blackman window function (Harris, 1978)
with maximum amplitude equal to (T/2mn)%, where T is the
source pulse duration. Accordingly, we have to convolve the
Green’s functions occurring in equations (47) and (51) with the
second derivative of this function, i.e., with

0 when —o0 <t <0,
3

2oy = 2 F, () = 270 n?) cos (2mnt/T)

when 0 <t < T, (52)
0 when T <t < 0,
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FIG. 6. Scalar traction 1/ in the fluid due to an impulsive point
force parallel to the interface in the solid as a function of time.
The source pulse has a maximum value max | Fy|= (T/2m)%,
and its duration is T = 0.1 s. Further, ¢, = 3 500 m/s, ¢5 =
2000 m/s, ¢, = 1500 m/s, p,/p;=2.5, d=1600 m, hy =
1 000 m, and hy = 0.

in which the constants b, are given by b, = +0.35869, b, =
— 0.48829, b, = +0.14128, and by = —0.01168. This pulse
shows great similarity with the classic Ricker wavelet. The
source pulse duration is taken to be T = 0.1 s; therefore its
center frequency is 15.5 Hz.

In Figures 2 and 3, the scalar traction 1/ in the fluid due to
an impulsive point source of expansion in the solid is plotted
as a function of time. In Figure 2, the offset of the source from
the interface is hy = 10 m, while in Figure 3, hy = 400 m. In
both figures we clearly see a P-wave arrival, but only in Figure
2, where the source is much closer to the solid/fluid interface,
do we see a strong Scholte wave arrival. Although a point
source of expansion generates only P-waves, S-waves are crea-
ted due to mode conversion at the interface. Figure 2 shows
this small S-wave arrival, but the converted S-mode is indis-
tinguishable in Figure 3. The absence of an S-wave is under-
standable in Figure 3 since the ray trajectories are much more
toward normal incidence, and hence less P-to-S conversion
takes place.

Figures 4, 5, and 6 show the scalar traction due to an im-
pulsive point force parallel to the interface as a function of
time, at offsets by = 10, 400, and 1 000 m, respectively. In all
three figures, the P- and S-wave arrivals are now clearly vis-
ible, while in Figures 5 and 6 the shear head wave arrival Sp
can also be observed. Again, we see that a Scholte wave arriv-
al is present only if the source is close to the interface. In
comparing Figures 2 and 4 we see that the change from an
expansion source to a point force does not change the polarity
of the P-wave, while the polarities of the S- and Scholte wave
arrivals are reversed. In Figure 6, no Scholte wave is visible
because the source is located far from the interface.

Finally, Figure 7 shows synthetic seismograms for an array
of receivers at depths between 1 000 and 1 600 m, with a point
force at an offset of 400 m. The changing position of the shear
head wave in the waveforms relative to the P-wave is clearly

Depth (km)

A A
0 0.2 0.4 0.6 0.8 1.0
Time (s)—>

Fi1G. 7. Scalar traction t/ at an array of receivers in the fluid
due to an impulsive point force parallel to the interface in the
solid as a function of time. The receivers are positioned at
depths between 1 000 and 1 600 m, at intervals of 100 m. The
source pulse has a maximum value max |Fy | = (T/2m)?, and
its duration is T = 0.1 s. Further, ¢p = 3 500 m/s, cg = 2 000
m/s, ¢, =1 500 m/s, p,/p, = 2.5, hy = 400 m, and hg = 0.

visible. Further, we see that the amplitude of the S-wave de-
creases strongly with increasing depth due to the radiation
pattern of the point force; while for the P-wave the radiation
pattern of the point force (partly) compensates the decrease
with increasing depth.

The time required to compute a synthetic seismogram for
the previous figures on a VAX 11/780 computer is about 10 s.
This is considerably less time than is needed for the numerical
evaluation of the integrals occurring in the standard Fourier-
Bessel transform method (Aki and Richards, 1980, p. 200) with
which the second author has experience.

CONCLUSION

With the aid of the modified Cagniard method, an ex-
pression has been derived for the scalar traction in a semiinfin-
ite fluid when an impulsive point source is present in a semiin-
finite solid near a plane interface between the fluid and the
solid media. Numerical resuits illustrate the different wave-
form features that result when the type of source and the offset
of the source in the solid are varied. Numerical evaluation of
the expressions requires much less computation time than
would be necessary if the analysis were done by evaluating the
standard Fourier and Fourier-Bessel inversion integrals.
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APPENDIX A
TRANSFORMATIONS IN THE MODIFIED
CAGNIARD METHOD

The main steps that lead from equation (44) to equation (45)
are briefly indicated here. First, the variables of integration
and B in equation (44) are changed into

o =k cos (6) — g sin (0), A
and

B =x sin (8) + g cos (8), (A-2)
where 0 follows from the polar-coordinate specification of the
point of observation, i.e.,

x =r cos (0), y =r sin (6). (A3)

In the integration with respect to x and g that results, g is kept

real, while the integrand is continued analytically into the
complex p plane, where p = ix. For fixed ¢, the integration in
the complex p plane is carried out along the path where

pr+(@* — p* + sp)"hy + (> — p* + 5D Phr =1, (A-4)

with t real and positive. Finally, the integrations with respect
to T and g are interchanged, and the resulting integrals with
respect to g are (with the aid of the transformation given in
Appendix B) transformed into integrals over the fixed range (0,
n/2). The latter transformation also removes the inverse
square-root singularities that can occur at the end points of
the ¢ integration. After this, the intégrand is smooth, and a
simple numerical integration formula suffices to yield results
of any desired accuracy.

APPENDIX B
TRANSFORMATION OF THE GREEN’S FUNCTION
INTEGRALS FOR NUMERICAL PURPOSES

All integrals that result after applying the transformations
of Appendix A are of the type

Q2
1= flg) da (B-1)
Q1
with @, > Q,, where f{(g) can have inverse square-root singu-
larities at either g = Q; or ¢ = Q,, or both. Instead of g we
introduce the variable of integration v through

q* = 0f cos? (y) + @3 sin® (v). (B-2)

Then the interval @, < g < Q,, where Q; and/or Q, depend
upon the position of observation and on time, is mapped onto
the fixed interval 0 < y < n/2; while

o GOy L

~ [0F cos® (y) + 03 sin® (W)]'”
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