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A time domain energy theorem for scattering of plane electromagnetic waves
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A time domain energy theorem for the scattering of plane electromagnetic waves by an obstacle of
bounded extent is derived. It is the counterpart in the time domain of the “optical theorem™ or the
“extinction cross section theorem” in the frequency domain. No assumptions as to the electromagnetic
behavior of the obstacle need to be made; so, the obstacle may be electromagnetically nonlinear and/or
time variant (a kind of behavior that is excluded in the frequency domain result). As to the wave
motion, three different kinds of time behavior are distinguished: (1) transient, (2) periodic, and (3)
perpetuating, but with finite mean power flow density. For all three cases the total energy (case 1) or
the time-averaged power (cases 2 and 3) that is both absorbed and scattered by the obstacle is related
to a certain time interaction integral of the incident plane wave and the spherical-wave amplitude of the
scattered wave in the far-field region, when observed in the direction of propagation of the incident
wave. The practical implications of the energy theorem are briefly indicated.

1. INTRODUCTION

In the theory of the scattering of electromagnetic
waves by an obstacle of bounded extent there are
several theorems that interrelate the different quan-
tities associated with this scattering. In the frequency
domain analysis of the problem, it must be assumed
that the scattering obstacle is linear and time in-
variant in its electromagnetic behavior. A time
domain analysis of the scattering problem reveals the
more general conditions under which the relevant
theorems may also hold in the time domain. In the
present paper, the energy theorem for plane wave
scattering is investigated. Its frequency domain
counterpart is known as the “optical theorem” or
“extinction cross section theorem” [de Hoop, 1959;
Van Bladel, 1964]. For three different kinds of time
behavior, namely, (1) transient, (2) periodic, and (3)
perpetuating with finite mean power flow density, it
is shown that the total energy (case 1) or the time-
averaged power (cases 2 and 3), that is both absorbed
and scattered by the obstacle, is related to a certain
time interaction integral of the incident plane wave
and the spherical-wave amplitude of the scattered
wave in the far-field region, when observed in the
direction of propagation of the incident wave. Our
time-domain derivation of the theorem shows that
the latter holds for obstacles that may be nonlinear
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and/or time variant in their electromagnetic behav-
ior. The theorem implies that the total amount of
energy (or the total time-averaged power) that is
both absorbed and scattered by the obstacle can, in
principle, be determined from a measurement at a
single position in the far-field region, provided that
the incident plane wave is known from a separate
measurement.

2. FORMULATION OF THE SCATTERING PROBLEM

In three-dimensional space R® a scattering object
is present. It occupies the bounded domain 2. The
boundary surface of & is denoted by 02, and the
complement of the union of 2 and 42 in R3 is de-
noted by 2. The unit vector along the normal to 02,
pointing away from 2, is denoted by n (Figure 1). It
is assumed that 09 is piecewise smooth. The electro-
magnetic properties of the scattering object remain
unspecified; it may show a nonlinear and/or a time
variant behavior. The medium occupying the domain
%' is electromagnetically characterized by a scalar,
positive, constant permittivity ¢ and a scalar, posi-
tive, constant permeability u. The speed of electro-
magnetic waves in this medium is ¢ = (gu) ~ /2,

Position in space is characterized by the position
vector r = xi, + yi, 4 zi,, where x, y, and z are the
Cartesian coordinates with respect to the orthogonal
Cartesian reference frame with origin @ and the three
mutually perpendicular base vectors of unit length i,

i,, and i,. In the order indicated, the base vectors

y?
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Fig. 1. Scattering configuration with incident plane wave. The
speed of electromagnetic waves in the surrounding medium is
¢ = ()12

form a right-handed system. The time coordinate is
denoted by t. Partial differentiation is denoted by 0,
andV=1i,0, +i,0, +i,0,.

The electromagnetic field in the configuration is
characterized by the electric field intensity E = E(r, ¢)
and the magnetic field intensity H = H(r, ¢). In 2/,
where the medium is linear, the total field is written
as the sum of the incident field {E, H'} and the
scattered field {E°, H*}. Note that, in general, the
scattered field is not linearly related to the incident
field. The incident field is defined everywhere in R?
and satisfies in 2 the source-free electromagnetic
field equations, i.e.,

VxH —E=0 re9 )
VxE+pupH=0 re2 2)

The scattered field is defined in &’ and satisfies in
this domain the source-free electromagnetic field
equations, i.e.,

VxH —ed,EE=0 re 9 3)

VxE+uHF=0 re9 @)
At large distances from the scattering object the scat-
tered field admits the representation
Er, ) ~ €G,, t — |r|/c)/dn|r|  as [r[— )
H'®r, &) ~ bG,, t — |r|/c)/dn|r|  as |r|[— o (6)
where i, = r/|r| is the unit vector in the direction of
observation. Hence i, € Q, where Q is the spherical
surface with origin @ and unit radius (Q = {r;
r - ¥ = 1}). The right-hand sides of (5) and (6) are the
expressions for the field intensities in the far-field

region. Between the electric and the magnetic far-
field amplitude radiation characteristics e° and h’, the

following relations exist:
e = Zh' x i, 0
h* = Yi, x € @®)

where Z = (u/e)'/? is the plane wave impedance and
Y = (¢/u)!? is the plane wave admittance in the
medium surrounding the obstacle. Equations (7) and
(8) imply that i, -e*=0 and i, - h* =0, ie., the scat-
tered spherical wave is asymptotically transverse in
its leading term. Note that the time argument of e’, h°
is delayed by the travel time from the origin (which is
located in the neighborhood of the obstacle) to the
point of observation,

Further, in the analysis we need the instantaneous
power flow P’ of the incident wave across 02 and
toward 2, i.e.,

Pi=—J n.(E' x HY) d4 ©)
redD

the instantaneous power flow P°® that the scattered
wave carries away from 02 toward 2, i.e.,

P =J n- (E* x HY) dA (10)
re0 2

and the instantaneous flow P® of power that is ab-
sorbed by the obstacle, i.e.,

P“=—f n-(E x H)dA (11)
redd

For the incident wave we now take the uniform
plane wave propagating in the direction of the unit
vector «:

{E, HY} = {e/(t — a - r/c), hi(t — o - 1/c)} (12)
Between ¢’ and h' the following relations exist:

e = Zh' x « (13)

W = Ya x ¢ (14)

where Z and Y are the same as in (7) and (8). Note
that (13) and (14) imply that the wave is transverse.

3. SURFACE SOURCE REPRESENTATION
OF THE SCATTERED FIELD

The basic tool in the derivation of the energy theo-
rem is the time domain surface source representation
of the scattered field. This representation is the elec-
tromagnetic analog of the Kirchhoff representation
for scalar wave fields. Let

Js=nx H° red? (15)
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and

Ki=E'%xn red? (16)

denote the scattered-field surface densities of electric
and magnetic current, respectively, and let

Ar, 1) = f dt’ f Gr—r',t — ), t') dA (17
to r1edP

and

A", t) = J dt’ f Gr—r,t —t)Kr', t') dA (18)
to v edP

denote the corresponding vector potentials. In (17)
and (18)

G(r, 1) = (4n|x])"8(t — |r|/c) (19)

denotes the free-space Green’s function of the three-
dimensional scalar wave equation. Then the follow-
ing integral relation for the scattered field holds:

t

— 0, A° + 5_1V<V- JAedt’> —V x A"
to

= {1, 4, O}JEr, 9 re{?, 09, %} te(ty, )
(20)
— 20, A" + ,u_1V<V : th"'dt’> £V x A
t0
={L,LO0JHx,©) re{2,09,9} te(t,, o)
21

In (20) and (21) we have taken into account the con-
dition of causality, i.e., we have assumed that the
scattered field vanishes everywhere in &' prior to ¢,
where ¢, is the instant at which the incident wave hits
the obstacle. A concise derivation of (20) and (21) can
be obtained with the aid of a Laplace transform with
respect to time and a Fourier transform over &'
From the derivation it follows that in the right-hand
sides of (15) and (16) the limiting values upon ap-
proaching 02 via &' have to be taken.

By letting |r|-—» oo in (17)«21), we arrive at inte-
gral representations for the far-field amplitude radi-
ation characteristics of the scattered wave. In the ex-
pression for G(r — r', t — t') (see (19)), we employ the
relation

lr|— o0

22

|r —r'| =|r| —1i, - r' 4+ vanishing terms as
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The use of (22) in (17) and (18) leads to

AS™ ~ a®™(i,, t — [r]/c)/dr|r] as |r|— o (23)
where
a’i,, t) = f Jo(r', t +1i, - 1'/c) dA (24)
T'edP
a"(i,, 1) = J K(r', t +1i,-1r'/c) dA (25)
redP

The use of (23) in (20) and (21) leads to the asymp-
totic expressions (5) and (6) with

e = —ul8,a° —i,(, - 3,29 + ¢, x 9,a"

h* = —e[8,a™ — ii, - 6,a™)] — ¢~ 1, x J,2°

(26)
27

It can easily be verified that the right-hand sides of
(26) and (27) satisfy (7) and (8).

4. ENERGY THEOREM

The time domain energy theorem takes on differ-
ent shapes, depending on the type of time behavior of
the electromagnetic field. Three cases are considered:
(1) transient fields, (2) time-periodic fields, and (3)
perpetuating fields with bounded mean value. The
three cases will be dealt with separately.

4.1. Transient fields

Transient fields vanish prior to a certain instant
and go to zero as t— o0, and théese properties hold at
any point in space. In our scattering problem the
instant ¢, at which the incident wave hits the obstacle
marks the onset of the scattering phenomenon. By
applying Gauss’ divergence theorem to the domain &
and to the vector E' x H', and using (1) and (2), it

follows that
J Pdt=0
to

where P’ is given by (9). This result expresses that the
medium with constitutive coefficients ¢ and y is loss-
less. Further, the total energy W* that is absorbed by
the obstacle is

(28)

we = f P dt (29)
1

where P? is given by (11), while the total energy W*
carried by the scattered wave is

W = f P dt (30)
t

0
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where P*® is given by (10). Let us consider now the
expression for the sum of the absorbed energy and
the scattered energy. With the aid of E = E' + E® and
H = H' + H°® the relevant expression can be rewrit-
ten as

we + W‘=—f d:f n(E' x H* + E* x HY) d4
to red?

@31)

The substitution of (12) and the use of (15) and (16)
yield

W+ W = rdt f [ei(t — o - ¥/c) - I, ©)
redd

to

+ hi(t — a - v/c) - Kylr, )] dA (32)

We now introduce the instant ¢ at which thé incident
wave reaches the origin of our chosen coordinate
system. Then we have e(f) = 0 and hi(t) = 0 when
—o0 <t <t, and the right-hand side of (32) can,
upon shifting the time integration, be rewritten as

W+ W* = J dt J [ei(t) - I5x, t + o - ¥/c)
tl 09

+ W) - Kglr, t + o - v/c)] dA (33)

Obviously, the relation between t, and t' is given by

to = ti + minreag(a . r/C) (34)

After comparing the right-hand side of (33) with the
expressions for e(a, t) and h*(«, ¢} that result from
(24)+27), and taking into account that « €/ = 0 and
o - h' = 0, we arrive at

Wt W= —p 1 f wei(t) . [ j (0, t')dt’:l dt (35)
and
We+ W= —¢! rhf(t) . [ J‘h‘(a, z')dt'] dt (36)

\
Equations (35) and (36) constitute the energy theo-
rem for transient plane wave scattering, In the right-
hand sides the scattered-field, spherical-wave ampli-
tudes in the far-field region occur in the direction of
observation ¢, i.e., in the direction of propagation of
the incident wave.
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4.2, Time-periodic fields

For time-periodic fields, with period T, we intro-
duce the time-averaged values, over a period, of the
different power flows. Let { > denote the time
average over a period, i.e.,

to+T
< >T=T’1j dt 37
to
Then the counterpart of (28) is
PHr=0 (38)
Further, the counterparts of (29) and (30) are
to+T
(P™p=T"! f P dt (39)
to
and
tot+T
(P*yp=T"1 f P dt (40)

respectively. Again we consider the expression for
the sum of the (time-averaged) absorbed power and
the (time-averaged) scattered power. This can be re-
written as (see (31))

PO+ <Py

= —<f n-(E x H‘+E‘xH‘)dA>
red? T

The substitution of (12) and the use of (15) and (16)
yield

(41)

(et — - r/c)« Iy(r, ©)

€02

PDr+PHr= <

+ Bt — a - 1/c) - Kylr, 0)] dA> “2)

T

After interchanging the time integration with the one
over 0% and shifting the variable in the resulting
time integration, we obtain

<el() » Is(r, t + o ¥/c)
redd

+ B - K, £+ - 1/)>p dA

POr+(PHr=
43)

Upon comparing the right-hand side with the ex-
pressions for e¥(x, t) and h'(a, ) that result from (24)-
(27), and taking into account that «-e¢ =0 and o -
hi = 0, we arrive at

PHOr+LPHr=—u ‘1<e"(f) . j e, 1) dt'> (44
t T

0
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and

t
POr+(PHr = —8_1<hi(t) . f h'(e, 1) dt'> (45)
to T
Equations (44) and (45) constitute the energy theo-
rem for time-periodic plane wave scattering. Note
that in the time integration of the scattered-field,
spherical-wave amplitudes the properties

{ee, t))r=0 (46)
and

<h{e, 1)) =0 47)
hold in view of (26) and (27).

Obviously, it has been assumed here that the inci-
dent field and the scattered field are both time
periodic with the same period T. Now, with regard
to the scattering object, this implies that a possibly
time varying behavior has to comply with this as-
sumption, ie., the electromagnetic properties of the

scattering object must at most be time periodic with
the same period T, also. ‘

4.3. Perpetuating fields

For perpetuating fields we assume that the time-

averaged values of the different power flow densities -

exist. Let { >, denote the relevant time averages;
then

( de=  lim

T —w,T2ow

(T, — T f W @)

Ty

In accordance with this, the fields are assumed to
have bounded values as t— — oo and as t— c0. Then
with (1) and (2), it follows that

(P, =0 (49)

As in the case of transient fields we consider the
expression for the sum of the time-averaged absorbed
power and the time-averaged scattered power. This
can be written as (see (41))

Py + <Py
'=—<J n-(E"xHS+ESxH")dA> (50)
red? «
The substitution of (12) and the use of (15) and (16)
yield '
(P +{PHp = <J [eit — - x/c) - Islr, 1)
red

+ hi(t — o r/c) - Kylr, 1)] dA> (51)

o

After interchanging the time integration with the one
over 02 and shifting the variable in the resulting
time integration, we obtain

P+ (P = f

red?

<ei(t) Iyt +a-r/c)

+ hi(e) - Kfr, t + - r/c)> dA (52)
After comparing the right-hand side with the ex-
pressions for e¥(«, t) and h¥(«, ) that result from (24)-
(27), and taking into account that «-e' =0 and «
-hi = 0, we arrive at

Po + (P, = —#”l<ei(t)' j e, t') dt’> (53)

- ©

_s~1<hf(r>- f W 1) dt’> (54)

Equations (53) and (54) constitute the energy theo-
rem for the scattering of perpetuating plane waves.
Note that in the time integration of the scattered-
field, spherical-wave amplitudes the properties

e, 1)) =0 (55)

and

i

(P + (P

and
<hi(e, £)), =0 (56)

hold. In comparison with the case of time-periodic
fields, no restrictions are, in this case, laid upon the
possible time behavior of the electromagnetic proper-
ties of the scattering object.

5. USAGE OF THE ENERGY THEOREM

The energy theorem derived in the previous sec-
tion relates the quantity W*¢ + W* to the far-field am-
plitude radiation characteristic of the scattered field
observed in the direction of propagation of the il-
luminating plane wave. As such, it can serve as a
check on the different approximations (of an analyti-
cal or a computational nature) that are made in the
practical analysis of scattering problems. The analy-
sis of the scattering by a nonlinear optical grating by
Reinisch and Neviére [1983] yields an example where
approximations of an analytical nature are involved.
Approximations of a computational nature are in-
duced by the discretization, both in time and in
space, used to solve a scattering problem numeri-
cally. In this respect it is noted that the energy theo-
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rem contains only integrals over finite domains
which can be evaluated by standard numerical pro-
cedures. They run over the surface of the scattering
object (see (24) and (25)) and over a certain time
interval. With regard to the time integrations, the
following observations are made. For transient fields,
the right-hand sides of (35) and (36) formally require
an integration over the interval (¢f;, 00); in practice,
this integration needs only to be carried out over the
interval during which the incident pulse significantly
differs from zero. For time-periodic fields, the right-
hand sides of (44) and (45) require, as expected, only
integrations over a single time period. For perpetu-
ating fields, the right-hand sides of (53) and (54) fall
in the category of time correlation integrals for which
appropriate routines should be employed.

Suppose now that the quantity W* + W* has been
computed, independently, from the field quantities in
the domain occupied by the scattering object. Then
the energy theorem shows up to what accuracy the
computations are consistent. If, on the other hand,
one trusts the computed field values, one need not
compute the quantity W* + W* (which requires extra
integrations), but directly obtains it by use of the
energy theorem.,

6. CONCLUSION

For the scattering of plane electromagnetic waves
by an object of bounded extent embedded in a ho-
mogeneous, isotropic, linear, lossless medium, an

DE HOOP: TIME DOMAIN ENERGY THEOREM

energy theorem has been derived. This theorem is the
time domain counterpart of the frequency domain
“optical theorem.” It relates the energy that is both
absorbed and scattered by the object to the
spherical-wave amplitude of the scattered field in the
far-field region, when observed in the direction of
propagation of the incident plane wave. Depending
on the time behavior of the incident wave (transient,
periodic, perpetuating), the energy theorem takes on
slightly different forms. An important consequence of
the full time domain analysis is that the electro-
magnetic properties of the scattering object hardly
need any specification, ie., unlike the case of fre-
quency domain analysis, time-variant and/or nonlin-
ear behavior is included. The practical implications
of the energy theorem are briefly indicated.
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