Generation of acoustic waves by an impulsive point source
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The space—time acoustic wave motion generated by an impulsive monopole point source in a
fluid/solid configuration with a plane boundary is calculated with the aid of the modified
Cagniard technique. The source is located in the fluid, and numerical results are presented for the
reflected-wave acoustic pressure, especially in those regions of space where head-wave
contributions occur. There is a marked difference in time response in the different regimes that
exist for the wave speed in the fluid in relation to the different wave speeds (compressional, shear,
Rayleigh) in the solid. These differences are of importance to the situation where the reflected
wave in the fluid is used to determine experimentally the elastic properties of the solid.

PACS numbers: 43.20.Px, 43.20.Fn, 43.20.Bi

INTRODUCTION

Acoustic waves as a diagnostic tool in determining the
mechanical parameters (volume density of mass, compress-
ibility, elastic stiffness) of fluids and solids have a widespread
use. The applications range from geophysics (seismic explo-

ration techniques, borehole soundings) to quantitative non-

destructive evaluation of mechanical structures and acoustic
tomography for medical purposes. In many cases, the theo-
retically obtained results for certain model configurations
serve as a guidance when interpreting experimentally ac-
quired data in the more complicated situations met in prac-
tice. To serve this purpose, the relative importance of the
different parameters that govern the behavior of a certain
configuration should show up as clearly as possible in the
results that apply to the model configuration. Now, in any
acoustic wave problem where fluid/solid interfaces play a
role, the case of a plane boundary between the two serves as a
canonical problem whose features should be thoroughly un-
derstood before analyzing more complicated geometries.

In the present paper we investigate the acoustic wave
motion in a fluid/solid configuration with a plane boundary.
The source is taken to be a point source that emits an impul-
sive wave. In accordance with the situations met in borehole
applications as well as in marine seismics, we locate the
source in the fluid and compute the values of the acoustic
pressure in the fluid. The corresponding problem for a two-
dimensional line source has been investigated in a previous
paper by the same authors.’ :

The standard approach to handle the problem is to use a
Fourier transform with respect to time and a Fourier—Bessel
transform with respect to the radial coordinate parallel to
the boundary. For the rotationally symmetrical case the fi-
nal result for the acoustic pressure is in the form of the rel-
evant Fourier and Fourier—Bessel inversion integrals which
have to be evaluated either numerically or, in certain regions
of observation, asymptotically. This setup of the problem
runs along the lines that are shown in Aki and Richards? for
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a two-fluid configuration. In the present paper, the problem
is solved by applying the first author’s modification of Cag-
niard’s technique (de Hoop,>* see also Miklowitz,® and Aki
and Richards®). The answer has a fairly simple shape: just a
convolution of the input signal of the source and an explicit
expression, in the form of a bounded integral, for the space—
time Green’s function of the configuration. The space-time
Green’s function (or “system’s response”) clearly shows each
feature of the time behavior of the acoustic pressure at differ-
ent locations in its dependence on the mechanical param-
eters involved. Also, the result can serve as a check on the
accuracy of the numerical procedures that are used to evalu-
ate the inversion integrals in the standard treatment of the
problem, which seems to be the only available procedure in
case the materials are lossy.

1. DESCRIPTION OF THE CONFIGURATION

We investigate theoretically the pulsed acoustic wave
motion in a two-media configuration with a plane interface.
One of the media is a homogeneous, ideal fluid; the otherisa
homogeneous, isotropic, perfectly elastic solid. The source is
located in the fluid. It generates an impulsive wave motion
that is reflected at the interface and, in this way, interacts
with the solid. We determine expressions for the acoustic
pressure of the reflected wave at any point in the fluid and at
any time with the aid of the modified Cagniard technique.

To specify position in the configuration, we employ
Cartesian coordinates {x, = x, x, =y, x, = z} with respect
to a Cartesian reference frame with origin O and the three
mutually perpendicular base vectors of unit length {i, =1i,,
i, =1i,,1; =1, }. Intheindicated order, the base vectors form
a right-handed system. The z axis is chosen normal to the
interface of the two media. The source, a transmitting trans-
ducer, is located at x =0, y = 0, z = Ay, with A >0. The
receiver, a receiving transducer, is located at x =d, y =0,
z = hg,withd >0, A, > 0. The further properties of the con-
figuration are listed in Table I (see also Fig. 1). The time
coordinate is denoted by ¢. It is assumed that the source
starts to act at the instant # = O and that prior to this instant
the entire configuration is at rest.
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TABLE I. Properties of the fluid/solid configuration.

Fluid Solid
Domain D, D,
z coordinate O<z< o ' — o <z<0
Volume density of mass Pr Ps
Constitutive K (bulk modulus A, p (Lamé
parameter(s) of compression) coefficients)
Wave speed(s) ¢ = (K/p)'"? cp = [(A +2u)/p. 1"
es = (p/p,)'?

Il. DESCRIPTION OF THE WAVE MOTION IN THE
CONFIGURATION

In the fluid, the acoustic wave motion consists of the
superposition of the incident wave and the reflected wave.
The incident wave is the wave that would be generated by the
transmitting transducer if the fluid were of infinite extent; it
will be denoted by the superscript ““..” The reflected wave is
the difference between the actual wave motion in the fluid
and the incident wave; it will be denoted by the superscript
“r.” In the fluid we consider the acoustic pressure p as the
fundamental unknown quantity and hence we have

p=p'+p in the domain D,. , (1)
The transmitted wave in the solid consists of a P wave that
travels with speed ¢, and whose particle displacement u” is
curlfree, and an S wave that travels with speed ¢y and whose
particle displacement u® is divergence free. In the solid we

consider the particle displacement u as the fundamental un-
known quantity and hence we have

u=u’+u® in the domain D, . (2)

In the modified Cagniard technique we first calculate the
wave constituents in the transformed domain, i.e., after hav-
ing carried out a one-sided Laplace transform with respect to
time, with real, positive transform parameter s, and a Four-
ier transform with respect to the coordinates x and y that are
parallel to the interface, with transform parameters sa and
sP3, respectively. To show the notation, we write down the
relevant transforms for the acoustic pressure:

Blx, y,z,8) = Jow exp( — st )p(x, y,z,t )dt , (3)

. Receiver
e Transmitter 9

\'

FIG. 1. Fluid/solid configuration with transmitter and receiver in fluid.
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bla, B,z,5)

=f_°° dy f " explisiax + BBl yzsidx, (&)

2 [
st (2
% J " expl — islax + By)1pla, Bzslda .

(5)
In Eq. (5), we have taken into account that in Eq. (4) the
transform parameters are sa and s83.

A. Incident wave

We now consider, more specifically, the case where the
point source is a monopole source. Accordingly, we have

p'=A"exp( —syslz—h7l), (6)
where

V= (l/c} +a?+BYY2 with Re(y/)>0, 7
and

A i= szpﬁzy/lg}/f y (8)
where (z,, is given by

Bo= | expl—stigoterar, o)

the monopole source strength being characterized by a vol-
ume density of injected fluid volume of the type

B, =4, (t)5(x, p.z — hr) . (10)

Hence, ¢ (¢ ) represents the pulse shape of the source signal.
In the calculations we further need the z component of the
particle displacement. This follows from the equation of mo-
tion and the expression Eq. (6) as

Z = & (y/spA" exp( —sylz — hr|) when z2hy . (11)

B. Reflected wave
For the reflected wave we write

p'=A"exp[ —sydz+hr)] in the domain D,.

(12)

To express the linear relationship between 4" and 4 we
introduce the reflection coefficient R, for the reflected wave

“in the fluid through
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A"=RA". (13)
The z component of the particle displacement associated
with the reflected wave follows from the equation of motion
and the expression Eq. (12) as

i, = (vs/spsd’

Xexp[ —sysz+hy)] in the domain Dj.
(14)

C. Transmitted P wave
The transform-domain representation of the transmit-
ted P wave is written as
(it ity 17} = {ic,iB, —yp}d”
Xexp[s(ypz — ¥shr)] in the domain D,
(15)
where
vp =(1/ch +a?+ 432 with Re(yp)>0. (16)

Equation (15) expresses that the P wave travels with speed ¢,
and that its particle displacement is curl free. In the calcula-
tions we further need the x,z, y,z, and z,z components of the
stress in the solid. They follow upon substituting the expres-
sion for the particle displacement in the constitutive relation.
For the P wave they follow as

{%5,2 ’%;z ’%:z }

= Z#S{iGVP,fﬁVP, - (a2 +B%+ 1/262«)}
XA exp[s(ypz — y;hy)] in the domain D,.

(17)
D. Transmitted S wave

The transform-domain representation of the transmit-
ted .S wave is written as

Xexp[s(ysz — yshr)] in the domain D,
(18)

where
ys =(1/k +a*+B)* with Re(ys)>0.  (19)
Equation (18) takes into account that the .S wave travels with
speed cg and that its particle displacement is divergence free.

For the S wave, the x,z, y,z, and z,z components of the stress
in the solid follow as

(7o ez} = —pslle® +v5)d 5 + apdj,apd;
+(B? + 7545, 2ysliad 5 + iB4 ;)
Xexp[s(ysz — thT)]
in the domain D, . (20)

With this, the transform-domain description of the wave
motion in the configuration has been completed. In the next
section we determine the as yet unknown amplitude coeffi-
cients 4", 4%, 47, and 4§ by applying the boundary condi-
tions at the fluid/solid interface.
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lil. DETERMINATION OF THE AMPLITUDE
COEFFICIENTS OF THE REFLECTED AND
TRANSMITTED WAVES

The boundary conditions at the fluid/solid interface re-
quire the continuity of the normal component of the particle
displacement, the equality of the normal component of the
traction in the solid and the opposite of the acoustic pressure
in the fluid, and the vanishing of the tangential components
of the traction in the solid. In the transform domain these
conditions lead to the equations

lim, o (@7 + i7) = lim, o (2] + i1}) , (21)
lim, o (77, +7;.) =lim, o (— 5" — 7}, (22)
lim, o (7;, +75.) =0, (23)
lim, (7, +7,.)=0. (24)

First, we use Egs. (17) and (20) in Egs. (23) and (24), and
arrive at
A3 =iaypdT/(a® 4+ B* 4 1/2c3), (25)
AS =By, AT /(a* + B2 + 1/2¢2). (26)
Next, using Egs. (15), (17), (18), (20}, (6), (11), (12), and (14) in
Egs. (21) and (22), while eliminating 4 § and 4 J with the aid
of Eqgs. (25) and (26}, we arrive at

1 A+ B2+ 1/2¢%

AT = 47, (27)

HS Ascu

- 4 t+4 .

A7 = DLV T AR (28)

Ascn

where '
A = (@ +B? + 1/2¢5P — (@ + B*rpys (29)

is the “Rayleigh-wave denominator” and

Ascu = pryp/Ap,7,Cs + Ag (30)

is the “Scholte-wave denominator.” The Rayleigh-wave de-
nominator is associated with surface waves along a traction-
free boundary of a solid (Rayleigh,’ see also Achenbach®).
The Scholte-wave denominator is associated with surface
waves along a fluid/solid interface (Scholte,”° see also Cag-
niard,"! and Miklowitz'?).

With this, the transform-domain expressions for the
wave motion in the configuration have been fully deter-
mined. The transformation of these expressions to the
space—time domain is carried out in subsequent sections. Ex-
plicit results will be given for the acoustic pressure of the
reflected wave in the fluid, since in all practical applications
this quantity is directly accessible to measurement,

IV. SPACE-TIME DOMAIN EXPRESSION FOR THE
ACOUSTIC PRESSURE OF THE REFLECTED WAVE

Considering the fluid/solid configuration as a linear
system in which, through the reflected wave, signals upon
their way from the transmitting transducer to the receiving
transducer gather information about the solid to be “sound-
ed,” we would like to write the time Laplace transform
expression p” for the acoustic pressure of the reflected wave
as [cf. Egs. (5), (6), (8), {12), and (28)]

P =504,G7, (31)
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where G  is the time Laplace transform of the space-time
Green’s function for the reflected wave in the fluid. Once the
corresponding space—time Green’s function G ; has been de-
termined, we can write the space~time expression for the
acoustic pressure p” of the reflected wave as

Pr(' ;) =P/5,3 J: ¢y(t —7)G - ,7)dT, when O<ti< oo .
(32)

In Eq. (32), the dot in the argument stands for the spatial
variables. Now, the transform-domain equivalent of Eq. (31)
would be

F=50$,G". (33)
Comparing Eq. (33) with Egs. (12), (13), (28), and (8), it fol-
lows that

Ey‘} = (R;/25°y Jexp[ — svz + hr)] » (34)
in which R, is given by [cf. Eq. (28)]
Re{a, B)={ _PfVP/4Ps7’fc4s + Ag)/Ascn- (35)

Starting from Eq. (34), the expression for G } is obtained with
the aid of the modified Cagniard technique. This techniquel

(0

Qi7) _
fo Im[R/(p",q)] !

1

QMI R (p7
Gy 1) = {Lw' mRAPa]

Qpl 1

d.
2P [Tha - P17

d
2P [Thig) — 2]

accomplishes the transformation of the integration with re-
spect to « and 3 [cf. Eq. (5)]

N 2 o o0 R
o=) |#) o
4 7/ Jow 4 —w 2877,

Xexp{ —s[iax + By + vz + hy)]}da (36
into the real integration

G 8= J:o explt — s7)[ (- ,7)dr, (37)

where I (- ,7) is an expression that does not depend on s, and
where the dot stands for the spatial variables. The unique-
ness theorem of the Laplace transform with real, positive
transform parameter s then ensures that (Lerch’s theorem,
see Widder")

. 0 when — 0 <7< T,
G f(' ,7') =
I'(-y7) when T<7< .

Here, T apparently is the arrival time of the reflected wave.
The actual transformations follow the pattern of the modi-
fied Cagniard technique for three-dimensional wave motion
(see Appendix A).

The final result is obtained as

(38)

when — o0 <7< Ty,

when Tp <7< Ty,

) _
+] Re[R/(p”.q9)]

1

Qpl7) _
fo Re[R,(p74)]
A

v

in which the limits of the integrations are
T—(1/c; — 1/c3) Phe + he)Y 1]
QfP = iy ’

d i3
(40)
and
' T2 1 172
=] , 41
e i) )
d 1 1 172
T,p=—+(—2——2) hr+he), . (@)
cp ¢ cp
is the arrival time of the head wave (if present),
Ty=[d*+ (hr + ha)*1"*/c, (43)
is the arrival time of the reflected body wave in the fluid,
A2+ (hr+hel (1 1\
Tis = (%) (44)
hy + hg ¢ cp

marks the end of the time interval in which the mapping Eq.
{46) yields a contribution,
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2P [P — T5g)] "

d
2P [P~ T3]

(39)
dg when Tp<7<Tpp g
when Tpp g <7< 0,
r
pﬂ‘sz+i(hT + hg){7* — szf" [d2+(hT +hR)2]qz}l/2
d? + (hr + hg )’
(45)

is the mapping from 7 onto p, with ¢ fixed, for the fluid body-
wave contribution,

PP = dr —(hy +he){[d? + (hr + hr 14" + T5 — 7}12

d?+ (hr + he)
(46)

is the mapping from 7 onto p, with g fixed, for the head-wave
contribution,

d = transmitter-to-receiver spacing measured
along the interface,

h, = distance from transmitter to interface,

hy = distance from receiver to interface.

In these relations we have
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[T}(q)__'fz]l/z= [d2+(hT +hR)2]1/2(q2__ szf)llz,
(47)

[P = T%g)]"*=[d*+ (hr + he*1"Q% — 61/,
(48)

while R ( p,g) follows from R (@, ) by carrying out the sub-
stitutions of Appendix A.

The head-wave contribution in Eq. (39) is only present
in those regions in space where d/[d*+ (hy + hg)*]"/?
>cs/cp. In arriving at Eq. (39), we have assumed the case
most often met in practice where ¢, < cp. Note, that for any
solid we have ¢ < ¢p. The results hold for the two cases that
remain as far as ¢, is compared with cg, viz., ¢r<cg, and
cs>cs (“fast formation” and “‘slow formation,” respective-
ly, for geoscience applications). In case ¢, <c,, the head-
wave contribution in Eq. (39) is absent.

Finally, the integrals with respect to ¢ in Eq. (39) are,
with the aid of the transformation given in Appendix B,
transformed into integrals over the fixed range (0,7/2). The
relevant transformation also removes the inverse square-
root singularities that can occur at the endpoints of the g
integration. After this, the integrand is smooth, and a simple
numerical integration formula suffices to yield results of any
desired accuracy.

V. NUMERICAL RESULTS

In this section, we present some curves showing com-
puted space-time Green’s functions. Now, the Green’s func-
tion for point-source excitation does not show as many inter-
esting features as is the case of the corresponding
two-dimensional problem with line-source excitation.’
Therefore, we shall only present results for two regimes, viz.,
a fast formation (¢, < c5) and a slow formation (cs <c,). In
Figs. 2 and 3, the space—time Green’s function is plotted as a
function of time for a transmitter/receiver distance d = 0.4
m, while 2, = hy = 0.0l m.

In the case of a fast formation, numerical problems arise
in the evaluation of the integral in Eq. (39) over the interval
Qs <q<Qp. For receiver positions where a shear head
wave occurs, the integrand in the relevant interval has an

0.5 T Tsen

0.0
= ost T
E ‘
5 s

-lOF

-1.5 N . 4

0 100 200 300 400

t{us) —o

FIG. 2. Impulsive point-source space-time Green’s function G ; for the re-
flected acoustic pressure in a fluid from a fluid/solid interface, as a function
of time. Parameters are: ¢, = 3500 m/s, ¢g = 2000 m/s, ¢, = 1500 m/s,
ps/pr=25,d=04m,and hy =hy =001 m.
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FIG. 3. Impulsive point-source space-time Green’s function G ; for the re-

flected acoustic pressure in a fluid from a fluid/solid interface, as a function
of time. Parameters are: ¢, = 3500 m/s, cg = 2000 m/s, ¢, = 2400 m/s,
ps/pr=2.5d=04m,and by = hy = 0.0l m.

infinite derivative at ¢ = Q, with Q defined by Eq. (40),
with ¢, replaced by cg, an interior point of the interval for
times T <7< Ty nq, Where T and Ts,q are defined by
Eqgs. (42) and (44) with ¢, replaced by cg. To speed up the
numerical integration, we subdivide the integration interval
O <q < Qpp at the point g = Q,5, and apply the transforma-
tion of Appendix B in the two subintervals. The various re-
gions of integration are shown in Fig. 4 and Table IL It is
remarked thatat Ty g and T4 the curves in Fig. 4 do not
intersect, but have a common tangent.

In Fig. 2, results are presented for a fast formation. The
arrival times of the different wave types are marked by ar-
rows. At ¢ = T, the arrival time of the compressional head
wave, the Green’s function has a discontinuity in slope. The
jump in the slope s a finite one. At = T, the arrival time of
the shear head wave, the Green’s function again has a finite
jump in slope. At ¢t = Ty, the reflected fluid-wave arrival
time, the Green’s function has a negative step discontinuity.
Finally, at the Scholte-wave arrival time ¢ = Ty, defined
by Tscu =d /¢scu, Where Agcy(p) =0 at p = + 1/cscy,

T/ P.end

FIG.4. O, O, and Qy; as functions of 7 and the various regions of integra-
tion that they define.
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TABLE II. Subdivision of ¢ integration for various 7 intervals.

7 interval q interval
—w<7<Tp no integration
Tp<r< Ty 0<q<Qp
Ts<r<Ty 0<q<Qp,
Os<9<Qp
Tp<T<Tisena 0<g<Qy,
O <9< Qs
Os<q9<Qp
Tisena <7< Tppena 0<g<Qp,
Or<q<Qp
Tipena <T< 0 0<q<Qy

the Green’s function has a smooth fluctuation. The Green’s
function does not return to zero but approaches a positive
final value as 7— 0. This is consistent with the Green’s func-
tion for the incident field, which is a step function in time.

In Fig. 3, the Green’s function for a slow formation is
shown. The major difference with the previous regime is that
the shear head wave is not present anymore. Further, the
Scholte wave has become less pronounced and is more sepa-
rated in time from the reflected fluid-wave arrival.

In Fig. 5, we present a synthetic seismogram for the
received ‘acoustic pressure, in case the space-time Green’s
function has been convolved with a certain source pressure
pulse. For the shape of the source pulse, we have used the
second derivative of a four-point optimum Blackman win-
dow function, i.e.,

0, when — w0 <7<0,

P33y (t) = ,,go = bn (2;’1 )2 Cos(h_;t) ’ (49)

when O<t<T,
0, when T<t< o,
in which the constants b, are given by b, = + 0.35869,
b= —0.48829, b,= +0.14128, and b, = — 0.01168,
which shows great similarity with the classical Ricker wave-
let often used in seismology. The time required to compute

Tscy
| Tyr l
)
|
t=0
;T . |
h N\ '
f H/
Ty I
I 1 1
0 100 200 300 400

t{us) —=

FIG. 5. Reflected acoustic pressure p” in a fluid from a fluid/solid interface,

the Green’s functions for one of the previous figures on a
VAX 11/780 computer amounts to about 10 s.

Vi. CONCLUSION

With aid of the modified Cagniard technique a closed-
form expression has been derived for the acoustic pressure in
space-time of the wave that is reflected and refracted into
the fluid when an impulsive monopole point source is pres-
ent near a plane interface between a fluid and a solid. Nu-
merical results illustrate the different features that show up
in the different regimes that exist for the wave speed in the
fluid in relation to the wave speeds (compressional, shear,
Rayleigh) in the solid. The numerical evaluation of the ex-
pressions requires much less time than would be the case for
the analysis through the evaluation of the standard time—
space Fourier and Fourier-Bessel inversion integrals.

APPENDIX A: TRANSFORMATIONS IN THE MODIFIED
CAGNIARD TECHNIQUE

In this appendix, the main steps that lead from Eq. (36)
to Eq. (37) are briefly indicated. First, the variables of inte-

_ gration a and S in Eq. (36} are changed into

a =xcos(f)—gsin@), (A1)
B =«sin(f)+ g cos(f), (A2)

where 8 follows from the polar-coordinate specification of
the point of observation, i.e.,

x=rcos(@), y=rsin@). (A3)
In the integration with respect to « and ¢ that results, ¢ is
kept real, while the integrand is continued analytically into
the complex p plane, where p = ix. For fixed g, the integra-
tion in the complex p plane is carried out along the path
where

pr+(@—p+ /) e+ hy) =1, (Ad)

with 7 real and positive. Finally, the integrations with re-
spect to 7 and g are interchanged (see Fig. 4), which leads,
together with Eq. (37), to the representation Eq. (39).

APPENDIX B: TRANSFORMATION OF THE GREEN’S
FUNCTION INTEGRALS FOR NUMERICAL PURPOSES

All integrals in Eq. (39) are of the type
(03
I= , flaidq, (B1)

with Q, > Q,, where f/(g) can have inverse square-root singu-
larities at either ¢ = Q, or ¢ = Q,, or both. We introduce
instead of g the variable of integration ¢ through

q° = Q1 cos*(¢f) + Q3 sin*(y)). (B2)
Then, the interval Q, < g < Q,, where Q, and/or Q, depend

on the position of observation and on time, is mapped onto
the fixed interval 0 < ¢ < 7/2, while

2Q5 — Qi)sinfg)cos(y)

due to an impulsive point source, as a function of time. The pressure source = [ ) 2 cos? W +0 2 sin2(¢)] 172 ay, (B3)
pulse of duration T'= 20 us is also shown. Further, ¢, = 3500 m/s, c; SR 1 2

= 2000 m/s, ¢, = 1500 m/s, p,/p; = 2.5,d = 0.4 m, and h, = hy, = 0.01 N (qz.—Q%)l/Z:(Q% _Q%)l/2 sin(¢) , (B4)
m. The head-wave arrivals (before t = 250 us) have been enlarged by a factor Cy 21/2 2 21172

of 10. (@ —q)""=(Q;—07) cos(¥) . (BS)
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