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Reflection and Transmission of Electromagnetic
Waves at a Rough Interface Between Two
Different Media

PETER M. vaN pDEN BERG anD A. T. o HOOP

Abstract—An iterative technique is developed to rigorously compute
the electromagnetic wave reflection and transmission at a rough inter-
face between two media. The method is based upon a wave-function
expansion technique in which the electromagnetic field equations and
the radiation condition are satisfied analytically, while the boundary
conditions at the interface are satisfied numerically. The latter is ac-
complished by an iterative minimization of the integrated square error
in the boundary conditions. In each step of the iteration, only Fourier
transforms of the spectral and spatial variables occur. As starting value,
the Sommerfeld-Weyl plane interface results can be employed.

1. INTRODUCTION

HEN studying wave reflection and transmission in geo-

physical configurations one is almost invariably con-
fronted with roughness of the interfaces between the different
geological structures. Only for fairly simple models (mostly
perfectly conducting cylindrical interfaces that are periodic
in one direction) exact solutions have been constructed. Solu-
tions of an approximate nature have been put forward to handle
those cases where an exact solution seems beyond the reach of
even present-day’s powerful computers. Among these are: the
Kirchhoff approximation and the physical-optics approxima-
tion for short wavelengths. By using the latter type of approxi-
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mation, surface-roughness effects can also be treated stochasti-
cally in a direct manner. When applying exact techniques, the
stochastic aspects have to be deduced from proper averages over
deterministically treated emsembles.

The literature on this subject is vast, and therefore we only
mention the most important reviews: Beckmann and Spizzi-
chino [1], Beckmann [2], Fortuin {3], Barrick and Peake [4],
Barrick [5], Bass and Fuks [6], Shmelev [7], Hurdle, Flowers,
and DeSanto [8], Trinkaus [9]. Further, we mention the
comprehensive thesis by Rosich [10], in which an excellent
historical introduction to rough-surface scattering theory as
well as to many related theories is included. The first treat-
ment of scattering from rough surfaces was by Rayleigh [11],
who used a perturbation method to calculate the reflection of
acoustic waves from a surface with a sinusoidal profile, while
Rice [12] generalized the method to calculate the reflection
of electromagnetic waves from any surface, whose profile could
be represented by a two-dimensional Fourier series. The solu-
tion was limited only by the assumption that the variations in
slope of the surface were small compared to the wavelength
(see also Schouten and de Hoop [13]). Within the realm of the
Rayleigh-Rice work we also mention the papers [14]-[24].

In this paper we develop an exact theory for the reflection
and transmission of electromagnetic waves at a rough interface
between two different media. Once the solution to this problem
has been obtained, it can serve as a building block in electro-
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magnetic wave propagation problems in layered configurations
where the interfaces between any two successive layers may
show roughness, The theory has to be implemented numerically
on a computer. With this in mind, we stress the importance of
iterative techniques. Here, storage requirements are minimized,
although sometimes at the cost of an increase in computation
time. The basicidea behind the method is that by expressing the
electromagnetic field quantities in terms of suitable expansion
functions, the electromagnetic field equations and the radiation
condition are satisfied analytically, leaving the boundary condi-
tions to be satisfied numerically. The latter is achieved by
minimizing the integrated square error in the electromagnetic
boundary conditions at the rough interface. The convergence
of the iteration scheme is proved and it is shown that as a con-
sequence at any interior point of the two media, the field values
converge towards the exact ones. The major limitation of the
method is put by the actual interval over which the (infinite)
Fourier integrals have to be computed. How this turns out in
practice, is the subject of investigation of a future paper.

The iteration scheme can be regarded as a continuous version
of the conjugate-gradient plus the steepest descent technique
for solving systems of linear algebraic equations iteratively
[25], [26], [27]. We give, however, an independent presenta-
tion in which, from first principles, it is shown how to obtain
optimum convergence. Experience with some two-dimensional
scattering problems has shown [28] that the iterative technique
is very efficient and could indeed handle configurations that
are beyond the reach of a direct, i.e., noniterative, method.

The configuration under investigation is assumed to be a de-
viation from the one with a plane interface and this suggests
the use of the well-known Sommerfeld-Weyl type solution
[29], [30], [31], [32] of the plane interface problem as a
starting value in the iterative technique applied to the rough
interface. Since the Sommerfeld-Weyl representation is simple
in the spatial Fourier (or spectral) domain, this also suggests
the use of (uniform and nonuniform) plane waves as expansion
functions. It is to be noted, however, that other starting values
for the initial guess could be used as well (for example, the
Kirchhoff or the physical-optics approximation). Since the
theory is fully three-dimensional, the amplitude, phase, and
polarization properties of the reflected and transmitted fields
follow from it. For a discussion on the importance of the latter
we refer to Boerner [33]. Finally, the iteration is stopped once
the prescribed accuracy is arrived at.

II. FORMULATION OF THE PROBLEM

The configuration under investigation consists of a rough in-
terface between two media with different electromagnetic
properties (Fig. 1). A point in space is specified by its right-
handed, orthogonal coordinates x,-p, z. We assume that the
roughness of the interface is a local deformation of an other-
wise plane boundary z =0. The analysis is carried out in the
frequency domain; the spectral field component with angular
frequency w has the complex time factor exp(-iwr). The two
media occupy the domains Dy and D,, respectively, and are
assumed to be electromagnetically linear, homogeneous and
isotropic with respective permittivities €, (w) and e,(w), and
permeabilities u;(w) and p,(w). We further assume that both
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Fig. 1. Geometry of the configuration.
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Fig. 2. Definition of the different domains in the configuration.

media exhibit some losses and that the real and imaginary parts
of € and y satisfy the Kramers-Kronig causality relations [34].
The interface is denoted by S (Fig. 2).

In D, an electromagnetic wave is incident upon S. This
wave is generated by a source of finite extent. The incident
wave is denoted by {£7, H'}. The total field in D, is written
as the superposition of the incident field and the reflected field
{E" H"}. The reflected field satisfies the source-free Maxwell

equations

VX H +iwe, E"=0,
- i ) when r €D, . .1
VX E" -iwu, H =0,

In (2.1), r =(x, y, z) denotes the position vector. The field in
D, is denoted as the transmitted field {E£7, H*}. It satisfies
the source-free Maxwell equations

VX H +iwe, BT =0,
VX E"- iwou, H =0

b}

when r€D,. 2.2)

Further, the fields satisfy the boundary conditions on S, and
at infinity {E", H"} and {E?, H'} should consist of waves
traveling away from S. Across S the tangential components of
the electric field intensity and the tangential components of
the magnetic field intensity must be continuous, i.e.,
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pXE'+pXE"=pXE",
. when re€S (2.3)
PXH'+p X H'=pX H',

in which p is the unit vector in the direction of the normal to
S, pointing into D, .

In the subdomain z > zy,y of Dy, where zy,,, denotes the
maximum value of z on S. the reflected field admits the repre-
sentation

o= [ e wy ook 1) aaas

(z>zmax) (24)
in which
ki =(a,B,%71) (2.5)
where
with Re (y,) >0,
Im(y,)>0. (2.6)

From (2.1) and (2.4) it follows that the spectral amplitudes
e =¢e"(a, ) and K" = 1’ (a, B) satisfy the relations

iky X b +iwe; " =0

ikt X " - ooy B =0 @7

Equation (2.4) is a plane-wave representation for the reflected
field in z>zy,. In the subdomain z <z, of D,, where
Zmin is the minimum value of z on S, the transmitted field ad-
mits the representation

v = (w?eyuy - a? - p2)V2

8 [ e ny oo s ) daa,

(z<zmin) (2.8)
in which
ky =(a,8,-72) \ 2.9
where
with Re (y,) >0,
Im(y,)>0. (2.10)

From (2.2) and (2.8) it follows that the spectral amplitudes e’ =
e'(a, B) and A’ = h'(a, B) satisfy the relations

iky X h'+ iwe, " =0

V2 = (Wrey iy - & - 32)1/2

ik; X e?~ iy k=0, @11

Equation (2.8) is a plane-wave representation for the trans-
mitted field in z < zpn.

It is noted that the representations (2.4) and (2.8) can in
general not be continued analytically [35], [36] into the do-
main Zyjn <z <Zzmax and thus they can not directly be used
to satisfy pointwise the boundary conditions at S. How repre-
sentations of this type can, nevertheless, be used to solve the
reflection/transmission problem will be discussed in the next
section.

III. THE INTEGRATED SQUARE ERROR CRITERION

In order to solve the reflection/transmission problem at hand,
we approximate computationally the reflected field in D, and
the transmitted field in D, by plane-wave representations that
satisfy the corresponding source-free electromagnetic field
equations and consist of constituents that travel in the direc-
tion of increasing z in D, and in the direction of decreasing z
inD,. In fact, we take expressions of the type

{E".0"} = f f (&% "} exp ik 1) da df

when r€D; (3.1)

and

{E', 5" = f f (¢} exp (1% 1) dad

when r€D, (3.2)

where

&=kiXb,

K= (o)™ kE X (kG X By) (3.3)
and

&=k X b,

B = (w2)™ 1 X (K X by). (3.4)

In view of (3.3), (3.1) satisfies (2.1), and in view of (3.4), (3.2)
satisfies (2.2), provided that the right-hand sides of (3.1) and
(3.2) converge in a certain sense.

From Appendix III, the theory of which is based upon the
reciprocity relation discussed in Appendix I and the existence
of Green’s state of the two-media problem discussed in Ap-
pendix I, we know that, if b; and b, are constructed such
that

ERR=ﬂ- (IFgl*+ |Fyl*d4 -0 (3.5)
S
where

Fp=YY*(pXE'+yXE - v XE?)

Fu=ZY* (X H'+pyX H"- pX H") (3.6)
we have

{E"(), B (D}~ {E" (), H'()} forany reD,

(3.7)
and
{E (), H'(D} > {E'(2),H'(r)} forany reD,.

(3.8

In (3.6), Y, = (€o/1o)Y? is the wave admittance in free space
and Z, = (1o/eo)"/? is the wave impedance in free space, which
have been taken as reference values in the expressions for Fg
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and Fz;. (An alternative choice would be the values of the wave
admittance and wave impedance of the medium in which the
incident wave is traveling.) In the next section, we shall show
how, in an iterative way, we can minimize ERR in (3.5) and
enforce its convergence to zero.

IV. ITERATIVE MINIMIZATION OF THE INTEGRATED
SQUARE ERROR

In this section we cutline an iterative minimization of the
integrated square error which leads to the solution of the
reflection/transmission problem. The tilde over the different
symbols to denote the approximating procedure will hence-
forth be omitted. We assume the existence of an iterative pro-
cedure, in which # steps have been carried out, and that this
has led to the values Q(l”) and Qg") which can be used in (3.3)
and (3.4). The corresponding “approximate” field values are

(@, 0y = [[ 10 w0 exp 7 1) dadp

when r€D;

{E'O, g™} = f f {e"®, n*™} exp (ik; - 1) dedf

when r€D, (4.1)

where
"™ =k X b,
'™ =k X bYY,

# = (eom) " R X (KX ()
BT = (wpy) ks X (k5 X ).
(4.2)

The integrated square error ERR® after n steps of iteration is
ERR® = f f (EPP+IEQDP) da (4.3)
s

in which the deviations F ,(5”) =F gl) (1), F I(L'I’) =F ,({") (7) are
given by

FP =YX ET+p X B -y X E'O)

FO =ZV2(p X H +p X B - p X H'O), (4.4)

In going from the (1 - 1)st step to the nth, we take
b, = 6050 + @, (4.5)

where 7% is a variational parameter and gf”)z = gf’f% (a, B) are
suitably chosen variational vector functiong(how_they actually
are constructed will be discussed in Sections V and VI). Upon
using (4.3), the deviations become

E(En,)H =F@ - n® r@y, (4.6)
in which

=y x f f ki X g exp (ik}-r) dedp

—o0

+Y{*p X ff ky X gD exp (iky r)deds (4.7)

fg’)=-26/2(@/11)'12><ff KT X (kI X g0)

+exp (i} + 1) da df

+Z % (wpy) P X f f k3 X (k3 X g8")

-exp (iky - r) da dB. (4.8)

The expression for ERR ) can be written as
ERR® = ERR®"1) - 2 Re (n® A + |n@12 g®
= ERR =1 - | 4@ g @) 4 |00 _ 400" p ()2 g ()
(4.9)
in which

A0 = ff (Eé"—l)* .I]g") +Eg"1)* I](_I")) dA (4.10)
hY
and

B = ff ArP12+ D12y dA (4.11)
UL I

where the asterisk denotes the complex conjugate. (Note, that
B® is real.) The right-hand side of (4.9) has, as a function of
7™ a minimum at

n = 4% p ), (4.12)

Taking 7" to be this value in (4.9), we have that ERR® <
ERR D, provided 4 ™ 5= 0. This latter condition puts some
restriction on the choice of the variational functions gﬁ")r Sub-
stitution of (4.12) in (4.9) leads to -

ERR® = ERR®~1) - | 4M|2/p @) (4.13)

from which it follows that, if 4 ) = 0, an improvement in the
satisfaction of the boundary conditions is arrived at, although

it isin a “mean” sense.
Substitution of (4.12) in (4.6) leads to

Efhy = FRD - AWy £, (4.14)
From this, it follows that
[[ e s+ r" rpyaa=o @19
s L kA

an orthogonality property on S that will be of later use. For
later purposes we also want to bring out the dependence of
A on g™ and g8, To this end, we write

A(”) = ff (E(ln“l)* g(ln) +£g71~1)* .ggn)) dol dﬁ (4.16)

i
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where

sPT =yt ET X

ff X F@D"exp (ik] 1) d4
S

erx (i [[ wxrg
S

exp ik 1) dA)

+Z(1>/2 (wuy)™
4.17)

ign_l)* =+Y )2 k; X jfgx Eg"l)* exp (ik; -r)dA4
S

~Z Y (wa) kg X (l_c;x f f pX Eff=0"
S

~exp (ik; 1) dA>. (4.18)
With this, (4.15) leads to
j (s g+ 50" gy aaag=0 . (4.19)

which exhibits that { _s_ﬁ"), s g”)} is orthogonal to {g(ln), g g")} in
the spectral domain.
In subsequent sections, some particular choices of g(l’”)z ,which

up to now have been completely arbitrary, will be discussed.

V. A SECOND MINIMIZATION STEP

In this section we will investigate how, during the nth itera-
tion, we can decrease the right-hand side of (4.13) still further
by manipulating the variational vector functions gY ") . This
will be done in such a manner that B® is mlmmlzed while
keeping A constant. In view of (4.19), the value ofA(”) re-
mains unchanged if, in the right-hand side of (4.16), for given
n, the functions g(") are replaced by g(”) ~ g g(” D where
3 ™ s a second varlatlonal parameter. Carrying out this re-
placement in (4.7) and (4.8), we are led to new values f (f)

that are given by
TPy =1y - ™r D, (5.1)

Using this in (4.11), a new value B of B® is constructed,
that follows as

B‘(n) =B(n) _ lc(n)|2/B(n—1) + 15(}1) _ C(n)*/B(n—1)|2B(n—1)
(5.2)

where

ct = f f (S8 g0+ 7 1) dA.
| e T

!

(5.3)

The right-hand side of (5.2) has, as a function of €™, a mini-
mum at

£ = 0D, (5.4)
Taking, in (5.2), £ to be this value, we arrive at
B® = p) _ IC(n)lz/B(n_l). (5.5)

First of all, this shows that B < B _if C® 0. Further,

it follows by substituting (5.4) in (5.1), that

ffs (FO - FE D+ FO" 0Dy g4 = 0, (5.6)

If the original sequence of functions { /¥ () r } was already such
that the right-hand side of (5.3) vanished, then no improvement
will be attained in this second minimization step. Note that
this is consistent with (5.6)! Hence, the second minimization
automatically stops after being carried out once. The resulting
expression for the improved integrated square error follows as

ERR® = ERR®-1) _ IA(")|2/(B(") - |C(n)|2/3(n—1)) (5.7

in which A®, B® and €™ are given by (4.10), (4.11), and
(5.3), respectively.

In the next section we shall discuss a procedure that leads, in
each iteration, to the generation of a particular value of g(")
Once ¢ ™ has been determined, we then replace g(") by

g0 =gl - gl (5.8)
where £®) is given by (5.4).

Now, with g 5”)2 , we again carry out the procedure of Section

1V. The result is that (4.14) and (4.15) are replaced by

EQy=Fg - @By r o, (5.9)
and
f f (EP" TR+ ER" - FfP)ad =0 (5.10)
! i /

respectively. In the latter, £ g’,)H (c.f., (4.4)) results from the
Q_(l'f)z that follow from (4.5).

From now on, we assume that this entire procedure has been
carried out in alliterations. (Note that the second minimization
step can only be carried out from n =2 onward, since gg )2 is
not defined). On this assumption, (5.9) can be replaced by

ERy=E L - A BO) T, (5.11)
with

EQy=FQy and Fp=F{y
while (4.10) can be replaced by

A0 = f fs (EE™D" S +EGDrfyad.  (5.12)

Further, (5.1), (5.3), (5.4), and (5.6) are then replaced by
P £970 619

c<")=f (SR T8+ T dd (514
S

g(n) = C(n)*/B—(n—l) (5.15)
[[Gersesrgrpnanso 1

respectively. Multiplying the complex conjugate of (5.11)
by fE("Hl), integrating over S, applying (5.16) and using (5.10)
with n replaced by n - 1, we obtain the result

f (F@* - FoD 4 fO" . F-Dya4 =0 (5.17)
i ] i
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which shows that {F{, FU} is orthogonal to { 7 -0
f I(}'" D}, In the spectral domain, the replaced values of
F gf 1_11) lead, via (4.17) and (4.18), to replaced values of
5?”2‘ D), In order to arrive at an orthogonality relation between
(5™, 5™} and { g({’), gg")}, we observe that, by substituting
(5.13) in (5.10), and using (5.17), we arrive at

ﬂ (FP" - fW+FEP* - rydA=0. (5.18)
S

By substituting (4.7), (4.8), and the replaced versions of (4.17)
and (4.18) with n - 1 replaced by #, into (5.18), we obtain the
desired orthogonality relation in the spectral domain

_U GEM g +5M" g™y dgaag=0. (5.19)

Equation (5.19) is the replaced form of (4.19) and will be of
later use in Section VI,

V1. GENERATION OF THE VARIATIONAL FUNCTIONS

As we have seen in Section IV, an iterative improvement in
the satisfaction of the boundary conditions at the interface is
only arrived at if, in each iteration, A® £0. The spectral-
domain equivalent of (5.12) shows that this can be guaranteed,
if we take

g_<1r,’)2 =§1(72_1)' (6.1)

Substituting (6.1) in the spectral domain equivalent of (5.12)
we obtain

A(n) = ff ([E§n—1)|2 + ]EZ(n—l)IZ) do dﬁ (62)

Substitution of (6.1) in (5.19) leads to

ff (FO -3 45" 5 ) dadp=0.  (63)

The choice (6.1) has another advantage. As we have seen in
Section V, the value of & ™ can only be determined after the
minimization of Section IV has been carried out. However, if
we could calculate £® beforehand, it would not be necessary
to return to the iteration of Section IV a second time, since
the minimization of Section IV could then be carried out with
E({l)r We shall now show that the choice (6.1) does yield pos-
s_ibi’]ity of calculating £ beforehand. To this end, we substi-
tute into (5.15) the value \

C = (B4 @-D% <ff(fgz)* F@D
U

I BTy aA - f f (F B
S

g fg‘l))dA) (6.4)

which follows from (5.14) and (5.11) with n replaced by n -
1. However, we also have

TOABLE 1 .
THE ITERATION SCHEME; Q(, " AND _lg(z ' ARE INPUT DATA

(INITIAL VALUES)

0 exp(ikl-r) do ds

0}y exp(ikter) da dB
Kyer

(
b = 1

11O )T 7Lk ¢ (g x 0f")) exlikyer) da an
O = gty g e w e g0y MO

O =zt wrnt ey B0 e gt

ern(® = 7o (E2  1E{0)1%) an

-

.
5% = - Voi El( x [fg v x Eén) exp(ig’.:) dA A
.
wzgd ek x (6 x [fg v x BN explik]er) da)
M -G g w % BN explikger) an

< zpd ) kG x (kg < [fg v x BN exp(ik3er) dA)
+

n=n+1
+
aln) _ e ]s§"'1)|2 R [ién-l){ ) do dg
if n=1 then g%}% = gg?%
if n>1 then gg?% = 5_5'321) + ﬁ%—yggnél)
e e vgb vt k]« gf™) expik]n) o ds
sty x 17k x af) explik;r) da dg
£ e g (o)t wx [57 kD (k] ad™) expiktr) du ds
+ Zo% (wuy) " w x ”E_nm kz*(£§*2§")> exp{ik,+r) da ds
s < pr (el E M%) e
R o oalnd, g(n) Egn% - gﬁ?;” + afm g%"%
-1
EE - BT -t o)
grr{M) = prr(n-1l o) p(m) |
n)* . (n-2 n* . 7 (n-2)
ff(zfg) EgD+ P Ef™)dd
N
oo
— -1)*  — - —_ —1)% -
—_—ff (ﬁf” 1) 'ﬁl(n 2)+£§n 1) '_S§" 2))dozd[3 (6.5)

in which (4.7), (4.8), the replaced versions of (4.17) and (4.18),
and (6.1) have been used. In view of (5.19) and (6.1) with n
replaced by # - 1, the right-hand side of (6.5) vanishes. Hence,
from (5.12), (5.15), (6.4), and (6.5) it follows that

g(n) = ~A(”)/A(" -1 (6.6)

Consequently, £™ can be computed in advance, provided the
value of A®"™1) is available. Finally, g ¢ ;)2 is obtained as follows

ED =50+ AWACE DY gD, n>2 (6.7)
while
g(ll,)2 =5 (10,)2 . (6.8)

The complete iteration scheme is shown in Table I, where the
bars over the symbols have been omitted.
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In Appendix 1V it is shown that the sequence of functions
{5(1”')2, n=0,1,2, -} and the sequence {fg’)H, n=1,2,3,
-+ -} are orthogonal sequences. =As such, the former can be
used to expand any spectral field amplitude b ,, while the
latter can be used to expand any tangential surface field Frn.
Of course, the actual use of such expansions requires the stor-
age of the two sequences for all values of the variables that are
needed in a numerical integration and up to some order which
is large enough to lead to sufficiently small integrated square
errors. In practice, the relevant storage will have to be done
on peripheral storage (e.g., disk files, tape).

VII. CONCLUDING REMARKS

A scheme has been developed by which the electromagnetic
field that is reflected and transmitted at a rough interface be-
tween two different media can be computed in an iterative
way. The method uses a wave-function expansion technique,
where the electromagnetic field equations and the radiation
condition are satisfied analytically, while the boundary condi-
tions at the interface are satisfied numerically. In two steps,
the integrated square error in the boundary conditions is mini-
mized, after which a particular choice of the variational func-
tions in the spectral domain leads to a relatively simple scheme.
The convergence of the iterative scheme is proved. Experience
with some two-dimensional scattering problems [28] has
shown that the technique is a very efficient one. Some final
remarks will be made.

Initial Guess

In the preceding sections, we arrived at values of b, and b,
that in their turn determine the reflected and transmitted fields.
The only freedom we still have is the choice of the initial values
5 and bV, In our case, where the roughness is considered as
a deviation from an otherwise plane interface, a natural choice
for 5 and 5 are the Sommerfeld-Weyl plane interface val-
ues of these quantities. However, other values for the initial
guess could be used as well (for example, the Kirchhoff or the
physical-optics approximation).

Computation of the Integrals

In each iteration step we only have to compute direct and
inverse Fourier transforms. This is efficiently accomplished
with the aid of the fast Fourier transform algorithm. The
remaining integrals leading to the values of 4@ and B® are
computed with the aid of linear interpolation. Further, the
integrands in the Fourier integrals contain the exponential
functions exp(iy,z) and exp(iy,z), which remain unaltered
in the iteration process. Hence, if sufficient storage ca}\)acity is
available, these functions can be stored for the interface under
consideration and for the values of « and § in the integration.

Periodic Interface

In case we are dealing with a two-dimensional periodic inter-
face, we replace the spectral integrations [f% da dB by double
Fourier series 2, -_c Zm=_w While the spatial integrations
[fs dA reduce to integrations over a single period.

APPENDIX [
RECIPROCITY RELATION

The frequency-domain reciprocity relation interrelates two
nonidentical, admissible electromagnetic states “4” and “B”

Fig. 3. States “4” and “B” in the bounded domain D.

of the same angular frequency w, that are present in the same
bounded domain D (Fig. 3). Using Maxwell’s equations with
source distributions J and K

VXH+iwe E=J

VXE-iwpH=-K (A1)
we arrive at
V- (E* X HP - EP X )= -E4 - P + BB - A
-HP KA +HY KB (A2)

being the local form of the reciprocity relation. Integration of
(A2) over D and application of Gauss’ divergence theorem yield
the global form of the reciprocity relation

ff v (B XH? - EB X H*)dA
oD

=fff(~§A-zB+§B-1A~1iB-I_<A+I_1A-1_<B)dV.
~D

(A3)

In (A3), 8D denotes the boundary surface of D and v denotes
the unit vector in the direction of the outward normal to 0D.

ArpEnDIX 1T
GREEN’S STATE OF THE Two-MEDIA PROBLEM

In this appendix we derive surface source-integral representa-
tions for the reflected and transmitted fields in the two-media
problem of Fig. 4. The configuration is excited by an incident
field {£*, H'}, the sources of which are located in D;. The
reflected and transmitted fields satisfy the homogeneous Max-
well’s equations in Dy and D,

VX HtiweE=0
VXE-iouHd=0 (B1)

whereinD;:e=¢e;,u=pu; andin D,: € = €5, u = i4,. Further,
inD,{£ H}={LE", H} denotes the reflected field, while, in
D,, {E,H}={E?, H'} denotes the transmitted field. In addi-
tion, the reflected field satisfies at infinity the radiation condi-
tion. In R?, we define the electric-current Green’s state as the
field { £/, H'} that satisfies the conditions

VXH +iwe B =j8(r-1),
r€D,UD,, reR?®, (B2
VXE - jwuH =0,

where € =€, L=, in Dy ande=e§,u=,u2 in D, , while
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E=€1

By

€=¢,

U:Uz

Fig. 4. The configuration of the two-media problem.

v X ljj = continuous across §
v X H'= continuous across S (B3)

and in which v is the unit vector along the outward normal to S,
Further, the field {E7, H'} satisfies the radiation condition at
infinity. Application of (A3)to the domain Dy and to the fields
{EA,HAY={E",H"} and {EB,HB} = {E/, H'} yields

[ wx sy w s ox a5 aa =20
A |

when rIE{DI,Dz}. (B4)
Application of (A3) to the domain D, and to the fields
{4, 0} =(E"H'} and {E®,H®}={E" H'}

yields
[[ wwxey-a s @xaty B aa= 0,480
S

when ' €{D,,D,}. (BS5)

Subtraction of (B5) from (B4), and use of (B3) leads to the
expression

f [(pXE"-pXE") -H'+(»XH" -y X H)-E'] d4
S

={j E'(),j E'(X)}, when r'€{Dy,D,}.
(B6)
Note that for j we can successively take the Cartesian unit vec-
tors and that {E/, H'} depends linearly on j. The field {£7, i
H'} is just the electromagnetic field excited by a point source
with electric current density J =7 §(z - r').

Similarly, when the magnetic-current Green’s state {E”, kK H k3

that is generated by the source distribution
K=ké(r-1) (B7)

is introduced, we arrive at the expression '

f [(2XE"-pXE*)-H*+(» X H"-pX H') E¥] a4
S

=-{k H'(r'),k-HY(r)}, when r'€{D1,D,}.

(B8)
It is obvious that { E¥, H %} depends linearly on k.
Since
pXE'+yXE"-pXE' =0
, when res
pXH +pXH" -pXH =0 (B9)

.
we arrive at the result
(i E"().i E()}= JJ; [(-2X EY) - H
+(pXH)-E']dA (B10)
(B EEO= J; (2 XE- B
+ o X HY)-E¥] dd
when #€{D,,D,}. (BIl)

These are the desired surface-source representations for the re-
flected and the transmitted fields. If {E7, H'} were known,
(B10) would lead to E"* at anyr' €D, ,, while if {E¥, H* }
were known, (B11) would lead to H"* at any ' €D, ,.

ArpenDIX III
SUFFICIENCY OF AN ERROR CRITERION
IN THE BOUNDARY CONDITIONS
_In this appendix the existence is assumed of some field {E d
H *} in D, and some field {E£°, 2 H '} in D,, which satisfy Max-
well’s equations (B1) and the radiation condition at infinity.
It is also assumed that they violate the boundary conditions at
S, ie.,
pXE +yXE" #p X E*
when r€S. €H
pXH vy X H #p X H'

It is then shown that a certain approximation in the boundary
conditions leads to a certain degree of approximation in the
reflected and transmitted fields. Since Maxwell’s equations
and the radiation condition are satisfied, relations of the type
(B6) and (B8) also hold for {£”, A"} in D and {£?, H'} in
D,:

(B, EX()Y = ff [(eXE"-pXE) &
S

+(pX H' - pX H) - E/] d4
(C2)

ff [(pXE"-pXE?) - H*

+(»XH - pX H*)-E*] dA
(C3)

where ¥ € {D,, D,}. Combining (C2) with (B10), and (C3)
with (B11), and applying Cauchy-Schwarz’s inequality, we ob-
tain the following inequalities

~ ~

-{k-H(2), k- H' ()} =

j+E'(#)-[-E"(#)* <(ERRg + ERRy)) f f o1
S
+Yo|E/1?) da (C4)
|k H'(r')- k- H'(X)*<(BRRg + ERRy) f f @015
N

+ Yo |E¥*) dA (C5)
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i E'(#)-j+ EX(r)? <(ERRg +ERRy) f f (Zo|HP?
S

+ Yol EV[?) dA (C6)

k-H'(¢')-k-H'(:))* <(ERRg + ERRy) ff (ZolH*I?
N

(€7

where ¥' € {D;, D, }, and where the integrated square errors in
the tangential electric and magnetic fields at S have been intro-
duced as

ERRE=ff Yol X EM+p X E"- p X E'|* dA
S

+YolE¥1?) a4

(C8)

ERRH=ffzolgxgngg"—gxéf[z dA.  (C9)
S

The factor Y, = (eo/1o)"? is the wave admittance in free space,
while Zy = (Uo/€o)V/? is the wave impedance in free space.
They have been included for dimensional convenience. Since
the surface integrals containing the Green’s states are bounded
(' €S), it follows that if

(ERRj; + ERRyy) = 0 (C10)
then
JET) = ET)
forany r €D, (C11)
kH(X)~> k- H(2)
and
P EN) - B
forany ¥ €D,. (C12)

k-HY() » k- H'()

Because of the arbitrariness of j and &, (C11) and (C12) lead to
{E",H"}>{E" H"} (C13)
{E',H"}~>{E" H'} (C14)

when r €D,
when ¥ €D,.

The error criterion (C10) has been used in the main text.

ApPENDIX IV
ORTHOGONALITY PROPERTIES

In this appendix it is proved that the sequences of functions
obtained from the minimization schemes developed in Sections
V and VI are completely orthogonal. The bars over thé relevant
symbols will be omitted, as well as the subscripts £, H, 1, and
2, that refer to the E- and H-field contributions to the differ-
ent field quantities. In this short-hand notation the following
relations are needed

g® =50 (D1)
g® =500+ (ADIACDY gD when i>2  (D2)
FO = pED - (40*p®) £ when i>1  (D3)

in which o

A® = ﬁ (s D2 da dp. (D4)
These follow from (6.8), (6.7), (5.11), and (6.2), respectively.
Further, the following relation holds (c.f., (4.7), (4.8), (4.17),

(4.18))
L% S - -] -

when {i,j} =1, 2, 3, -+ -. From (D1) and (D2), we can con-

clude that
g0 =40 2’: RETO

J=1

when i>1. (D6)

The proof of the orthogonality relationships will be given by
induction. To this end, assume that

ff SEV* U gug8=0  when i) (D7

holds for {i,/}=1,2,3, ", k, where k > 3. Now, from (6.3)
it follows already that (D7) holds for {7,j} = 1, 2. Next, (D6)
and (D7) lead to the relation

f f sE e ®auap=A®  when i<k. (D8)

Multiplying the complex conjugate of (D3) by I ®  and using
(D5), one arrives at the result

ff E(i)* 'E(k) da dp = ff g("'l)* -g(k) da dp

- (ADyp0y ff FOTLr® gy
A

(DY)

When i <k - 1, (D8) shows that the left-hand side and the first
term on the right-hand side of (D9) are both equal to A®,
from which it follows that

ffz(i)*-f(k)dA=0 when i<k-1. (D10)
S

Note that (D10) is one of the desired orthogonality relations.
For the next step, one requires the relation

ff FO'.rDg4=0 when i=j or i=j+1.
N

(D11)
This follows from (5.10) and (5.17). Multiplying the expression
that results from (D3) with 7 = k successively by f*~2), f#-3)
- -,z(l), integrating over S, and using (D11); one successively
obtains the conditions ‘

ff F@" . pk-2) g4 =0
B / (
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ﬂ FO 169 g4 =0

S - —_—

ffp(k)* .f(l) dAd =0.
) f

Together with (D11) fori=k,j=k,andi=k,j=k- 1,(D12)
leads to

(D12)

ffg(m* fDdA=0 when j<k. (D13)
) I
From (D13) and (D5) it follows that
ff s®" gD dudp=0 when j<k. (D14)

Upon substituting (D2) in (D14) and reusing (D14), one finally
obtains

ff s®* 50U Ddadp=0 when j<k. (D15)

Hence the subsequent member s ® of the sequence { g(o), K W,
s@ .. @D s orthogonal to all previous members. In-
duction then completes the proof of (D7) for alliandj. Asa
consequence, (D10) leads to

ff f(z‘)*.f(f')dA=0 when i¥#j (D16)
o & z

for all i and J.
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