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A general, relativistic formalism is developed for the three-dimensional scattering of
electromagnetic waves by an object that is in uniform translational motion with respect toa séurce
of electromagnetic radiation. The theory applies to objects of arbitrary size, shape, and physical
composition. In particular, the temporal frequency spectrum of the field detected by a receiver

that is stationary with respect to the source is determined. Numerical results pertaining to the
scattering of a time-harmonic plane wave by a small, uniformly moving particle are presented.

PACS numbers: 11.80. — m, 41.10.Hv

1. INTRODUCTION

The relativistic theory of scattering of electromagnetic
waves by obstacles in uniform translational motion has been
the subject of investigation by several authors. For the scat-
tering of two-dimensional waves by cylindrical obstacles, 1-3
as well as for three-dimensional scattering by obstacles of
bounded extent,*> expressions have been obtained for the

scattered field as it is observed by a receiver that is stationary
with respect to the source that illuminates the moving object.
However, all these expressions apply to the case where the
distance between the moving obstacle and the receiver is
large at all times, in which case the far-field approximation
for the scattered field can be used.

In the present paper, we develop the three-dimensional
relativistic scattering of electromagnetic waves by a uni-
formly moving obstacle of bounded extent for any location
of the receiver, stationary with respect to the source. As in
Refs. 1-5, the Lorentz transformation is used to transform

. the field radiated by the source to the frame of reference in
which the obstacle is at rest and the scattering problem is
solved in this reference frame, after which the scattered field
is transformed to the frame of reference in which the receiver
is at rest. A Fourier transform of the latter result finally leads
to the desired frequency content of the received signal (SI
units are used throughout).

2. FORMULATION OF THE PROBLEM

We consider the scattering of electromagnetic waves by
an obstacle that moves with uniform velocity v with respect
to a source of electromagnetic radiation in free space. We
adopt two inertial frames of reference K and K’ (Fig. 1),
where K is denoted as the laboratory frame and K ' as the
obstacle frame. The source is at rest with respect to K, while
the obstacle is at rest with respect to K'. We assume that K
and K’ coincide at the instant ¢ = ¢* = 0 and therefore, the
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2716 J: Math. Phys. 22 (11), November 1981

0022-2488/81/112716-07$01.00

space-time coordinates {r,z } of Kand {r',t'} of K" are mutu-
ally related by the Lorentz transformation®

' = iy Xr)Xiy +y{ — v + (i )iy } (1)
and

t'= 7{t — vr/c} }, (2)
where c, is the speed of light in vacuo and i and y are given

by

i) = v/(vv)'/? (3)
and

y=[1—=(vw/eg]'% (4)
respectively.

For notational simplicity, the electric field strength E
and the magnetic field strength H are grouped in the column
matrix [F] according to

- [}

The incident field [F’] in K is defined as the field that would
be present in the absence of the obstacle. The scattered field
[F*] in K is introduced as the difference between the total

Obstacle
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FIG. 1. Geometry of the scattering problem.
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field [F}in K and [F'], ie,,

[F'l=[F]1-[F]. (6)
Similarly the incident, the total, and the scattered fields as
observed in K ' will be denoted by [F"],[F'], and [F*],
respectively.

It is our purpose to arrive at an expression from which
the scattered field [F*] in K can be calculated if the incident
field [F'] (in K ), the geometry and the electromagnetic prop-
erties of the obstacle (in K '), and its relative speed v with
respect to K are known.

3. DERIVATION OF AN EXPRESSION FOR THE
SCATTERED FIELD IN THE LABORATORY FRAME

In this section we derive a general expression for the
scattered field in the laboratory frame that is suitable for our
further considerations. To this aim we carry out a specific
scheme of Lorentz transformations that is also at the root of
the analysis in Refs, 1-5. The relevant steps (see also Fig. 2)
are listed below.

A. The incident field [F] is specified in the laboratory
frame.

B. From [F], the incident field [F*] in the obstacle
frame K ' follows by the Lorentz transformation (see, e.g.,
Ref. 6),

[F']=[ZLWIF], (7)

in which the square matrix [.Z’(v)] can be written as

LABORATORY FRAME K OBSTACLE FRAME X'

Incident field Lorentz Incident field
; - i
F'3 transformation - (F'

Y

Fourier transformation
of the incident field

FeF

)

Frequency-domain

Integral-representation
of the scattered field

FUIFS )

{

Inverse Fourier
\
transformation of the

Scattered field inverse Lorentz
IF%) transformation scattered field

1

[F®

Y

Fourier transformation
. of the scattered field

F [F5]

FIG. 2. Flow diagram illustrating the derivation of an expression for the
scattered field in the laboratory frame.
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[éﬂeev ][y‘emv ]
L2t = | i T,
L] [£m(v)]
with the submatrices defined through the relations
[Zw) ] [E] = (i, -E)i + (i, XE)xi,,
(L)1 (] = poyv X H, (%)
[.Zmw)][E] = — e;yvXE
[ [HT] = (i H)i, + (i, }XH)xi,
where i is given by Eq. (3), yis given by Eq. (4), and €, and 11,
are the permittivity and permeability of vacuum,
respectively.
C. Since the scattering problem in X ' will be formulated
in the frequency domain, the next step is the application of

the temporal Fourier transformation % ' to [F]; it is de-
fined by the relation

FF'] = ro dt'[Flexplion't). (10)

D». The scattered field in K’ can be thought of as to be
generated by contrast currents {polarization and magnetiza-
tion currents) that are of the volume type for penetrable ob-

* jects and of the surface type for impenetrable objects. The

electromagnetic properties of the former are described in
terms of constitutive relations (in the obstacle frame K ') that
express the contrast currents in terms of the field values in
the obstacle, while for the latter the electromagnetic proper-
ties are described in terms of boundary conditions to be laid
upon the limiting values of the field at the boundary surface
of the obstacle (see, e.g., Ref. 7).

Let the domain occupied by the scattering object in K’
be denoted by ¥’ and let 3V’ be the boundary surface of V.
For penetrable obstacles, we can now express the Fourier
transform of the vector potential {4 '], i.e.,.% '[4 '],interms of
contrast currents of the volume type [J} ] by

F’[A’]zf av(p)G' 7 V] (11)
i
in which [4 'Tand [J}, ] can be written as
A€
1 [¥] :
[4'] Am (12)

and

=[] :
V1= | {13)

where A® and A™ are the volume vector potentials due to the
polarization current of the volume type J5, and the magneti-
zation current of the volume type J, respectively. These
currents are defined as
Jo =3 +4,P
and (14)
Iy = 3,1oM,
where J' is the current density, P’ is the electric polarization,

and M’ isthe magnetizationinside V'. In(11), G’ is the three-
dimensional, free space Green’s function, given by Ref. 7

G' = explio'|r' — p’l/co]/477'|r' —p'l (15)
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Similarly, for impenetrable scatters, we have

F'[A']l = dA (p\G'F'[J ], (16)>
av’
where the surface currents are defined as
J¢= —n'XH (17)
and
J7 =n'XE

The Fourier transform of the scattered field in K ', .% ' [F*],
can be expressed in terms of the vector potentials according
to’

F'Fl=[D'1F'[4], (18)
where % '[4 '] is given by Eq. (11) for a penetrable scatterer
and by Eq. (16) for an impenetrable scatterer and where the
differential operator [D '] can be written as

, [Dee’][Dem’]
[D ] = { me’r mm'] |’
[D"]1[D™"]
with the submatrices defined through the relations
[Dee’]‘?lAe ICL)/.L()._ lA(,
‘ — (iw'e,) 'V { VT A,

[D em']y:Am’ - V; X‘/GZIAM', (20)

[D™)F'AY = V' X.F'A,

[D mm’]?rAm' - I.&)’E gTIAm’

(la)ﬂ )—\V {V/ u /Am}
With V= ix’ ax' + iy' ay' + lz' az’ .

E. In order to calculate the scattered field [F*] in the
laboratory frame K, we apply the inverse Lorentz transfor-
mation to [F*]. Now, [F*] is recovered from .%'[F*] by
applying the inverse Fourier transformation % — '

[F<] =5 ~"{7[F1}, 1)
which is defined by the relation
y-~- 1’{97/[}75] }

(19)

= (277')_'J_oo do' 7' [F*] exp( — io't’). (22)

F. Now, [F~] follows from [F*] by applying the in-_
verse Lorentz transformation

[F*]=[L~'WIF], (23)
where [~ !(v)] follows from (8) and (9) through
7' =[ZL(—V] (24)

G. The temporal frequency spectrum of the scattered
field in K is finally found from the Fourier transformation

FF*] = Jm dt [F*] expliwt ). (25)

From Egs. (23)—(25), it follows that the temporal frequency

spectrum of the scattered field in K can be written as
FIF =512 "1[F"]. {26)

The transformations occurring in (26) are linear and we now

use this property to exhibit the structure of % [F*] more
explicitly. In principle, the approach presented here runs
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along the same lines as followed in Ref. 5, be it that we have
not restricted our considerations to the far-field approxima-
tion of the scattered field in X . Of course, the latter approxi-
mation follows as a special case from our expressions.

Since the transformations % and [.¢° ~'] are linear and
[~ '] does not depend on the time coordinate ¢, they can be
interchanged. To perform the Fourier transformation .% of
the scattered field [F <], this field has to be specified as a
function of the time coordinate ¢. This is accomplished by
first expressing, with the aid of (21) and (18), [F*] in terms of
the space-time coordinates {r',#'} in K ', introducing the vec-
tor potentials [4 ']. Equation (26) can now be written as

FIFl=[L"\FFV[D'\F'[4]. (27)
Substitution of (18) and (22) in (27) then results in

FIF] = (27r)_‘J- do' [ NFD']

X exp( — iw't')\F'[4'], (28)
where the integration with respect to o’ has been inter-
changed with % and [.¥ ~']. We have to keep in mind that,
in order to perform the Fourier transformation %, all space-
time coordinates {r’, '} occurring in the terms to the right of
the operator .% in (28) have to be expressed in terms of the
space-time cordinates {r,z } by the Lorentz transformation
(1) and {2).

It can be shown that %
too, in the following way:
FIDNexp(— in't")F'[4']

= [D1F exp( — i0't"'\F'[4], (29)
where [Z ] follows from [D '] given in (19) and (20) by replac-
ing V' by (0'/co)d, where d is given by

# and [D '] can be interchanged,

d = (c/®')V, +isiy, (30)

- with
V= =i X(iy XV) =V —i,(i-V) (31)

and
s =(w— yo')/Byw’, \ (32)

where y is given by (4) and 3 is given by
B=|v|/cq v (33)

Since in Eq. (29) G’ exp( — iw't ') is the only term to the right
of # that needs expression in termsof {r,z } [cf. (1 1)] weonly
have to determine

Y =F(G'exp(—in't')}], (34)

where G' is given by (15). The relevant function & is ob-
tained-as'®

G = (— i/4y|V]) exp( — ia'sp} /cq) exp[ia'V( B + s)ry /o]
HMS(1-"] (s <)

: (35)
(= 2i/mKo[(s* ~ 1)1 (|s]>1)

[for this purpose, 10.1.1 from Ref. 9 has to be used in (34),

after which the result can be found on p. 56 of Ref. 10.] where
H {!"is the Hankel function of the first kind and order zero,
K, is a modified Bessel function of the second kind and order
zero, while
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pi =ip’s

rp =1,

pi =p —pjiy, (36)
r, =r—r”i”,

¢ =0o'[r, —pil/co
Finally, combining (26)-(36), the temporal frequency spec-
trum of the scattered field in K,.% [F*], can be written as

FF°] =(27T)_‘f00 do'[ L "1D]
x[ ar(pme7iry) ey
- .
- for penetrable scatterers and as ‘
J“_[Fs]=(27r)_‘fw do'[£~'][D]

x [ adipyz 70 (38)

for impenetrable scatterers.

Through (37) and (38) the temporal frequency spectrum
of the scattered field in the laboratory frame is expressed in
terms of volume or surface sources in the obstacle frame that
are located either in the interior region or on the boundary of
the obstacle, respectively. The strength of these sources can
be determined by solving the scattering problem in the obsta-
cle frame, i.e., for an obstacle at rest that is illuminated by
[F"]. Depending upon the geometry and the electromagnet-
ic properties of the obstacle, computational as well as analyt-
ical methods can be used for this purpose.

The Green’s function occurring in (37) and (38), as given
by (35), has a singularity at |s| = 1. This kind of singularity
has already been noted and discussed by de Zutter.> When
the distance between observer and moving obstacle is large
at all times (|r, |— o0 ), asymptotic expressions for H {j' and
K, canbe used in (35) and, in that case, Egs. (37) and (38) can
be reduced to an expression already presented in Ref. 5.

4.PLANE-WAVE SCATTERING BY ASMALL OBSTACLE
IN UNIFORM, TRANSLATIONAL MOTION

We shall now apply the results from Sec. 3 to the scat-
tering of a sinusoidal uniform plane wave with angular fre-
quency £ by a uniformly moving obstacle with spatial di-
mensions that are small compared to the wavelength of the
incident field. The incident field in X is now given as

[F] = [f1] cos{2t — k), (39).

where the wave vector k is given by
k =uf/c, ' (40)

(uis the direction of propagation of the incident plane wave),
and [ f'] by

r=2] 1)

Here e’ and h' are the plane-wave amplitudes of the electric
and the magnetic field strengths, respectively. The incident
field in K’ is also a plane wave, written as
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Sphere

Observer

FIG. 3. Geometry of the scatterinig problem for which numencal results are
presented in Figs. 4-6. The incident electric field is directed along the y axis.

[F']= [f‘;] cos{2't' —k'r'). (42)

Expressions for [ /7], k', and 2" are given in the Appendix.
Since further, the obstacle is assumed to be very small, we
can in the limit |p’|—0, use the dipole approximation (see,
e.g., Ref. 8)in (37) and (38):

[arerzz i)

f V()9 7]
av’
= —i.()’[ P

#om,]via(w —2)+580' + 2N G y o

(43)

© where 9, _ , follows from Eq. (35) by substituting p’ = 0.In

(43), the electric dipole moment p’ and the magnetic dipole
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moment m’ are given by

p =edl% e (44)
and

m’ = IT™.h’, respectively.

The eléectric polarizability tensor /T ¢ and the magnetic
polarizability tensor /7™ reflect the geometry and the elec-
tromagnetic properties of the obstacle.

After substitution of Eq. (43) in (37) and (38), we now
have an explicit expression from which the temporal fre-
quency spectrum of [F*] can be calculated as soon as [F']
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and the electric and magnetic polarizability tensors 77 ¢ and
IT"™ are specified. The differentiations occurring in [Z'] can
be performed explicitly with the aid of the well- known differ-
entiation formulas for H ' and K.

5. NUMERICAL RESULTS

In this section we present some numerical results for the
scattering of a time-harmonic, uniform plane wave with fre-
quency {2 by a small, uniformly moving, homogeneous, and
isotropic sphere. For a sphere IT ¢ and 1T ™ are glven by Ref.
11 (p. 259)

p=02  ----- far-field approximation
lklh=8 exact field
.3
Z 61073
o>
ko)
E
=)
[
g
& 4107
>
o
C
[V
2
o
(9]
&
QL
5
. 21073
[e)
0
3
3
°
[o]
£
x
]
04— :
050 075 150
(b} W/ ————

FIG. 5. Comparison between the y component of the scattered electric field
calculated with the aid of the far-field approximation and calculated with
the exact field expressions for |k|h = 16 (a), |k|A = 8 (b), and |k|h =2{c}.
The other parameters arell°=1"= k|7 B =
v=02cl,,u=1,,e=|eli,.
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11° = 4ra® ’+21 (45)
€, »
and
— 1
H'"=47Ta3'ur—+2—1, (46)
e

where I is the unit tensor of rank two, a is the radius of the
sphere, and €, and y, are the relative permittivity and per-
meability of the sphere, respectively.

The numerical results presented in this section apply to
the case /T° = I1™ = 10~ %|k| *I, where the wave vector of
the incident wave, k, is defined by Eq. (40). The sphere is
moving uniformly in the direction of increasing z and there-
fore, we can write

v = i, . (47)
The direction of propagation of the incident wave is assumed
to be given by

u=i,. (48)
Furthermore, the incident electric field is taken to be direct-
ed along the y axis, i.e,,

e = |eli,, (49)
while the incident magnetic field is given by
h' = (€0/pto) Pux e’ ' (50)

The observer is located on the positive y axis of the laborato-
ry frame at a distance /4 from the origin O (see Fig. 3).

In Fig. 4, the frequency spectrum of the scattered elec-
tric field is shown as a function of the normalized frequency
/12 for [k|h = 2. It is observed that only the y component
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FIG. 6. The normalized x, y, and z components of the scattered electric field
as a function of the normalized frequency for 8= 0.2 and {k|# = 0.5. The
other parameters are /T° = IT™ = 107 *|k| =%/, v = 0.2ci,,u = i,,e' = |¢'li,.

2721 J. Math. Phys., Vol. 22, No. 11, November 1981

has a singularity at |s| = + 1 [0/2 = (1 + B)¥*].

Figure 5 shows for several values of |k|4, the difference
between the actual field values and the far-field approxima-
tion.” The dashed curve is obtained from the latter approxi-
mation, while the solid curve is obtained from (37), (43), and
(44). It follows that the far-field approximation is quite good
at |k|4 = 8 and |k|# = 16, while significant deviations occur
at [k|h = 2. The largest differences occur around those fre-
quencies where the major contribution to the spectrum origi-
nates from those time values during which the scatterer
passes the observer. Since the distance between the scatterer
and observer is small at that time, the far-field approxima-
tion is then inaccurate. It was already stated in Ref. 5 that,
for larger values of |k|4, the scattered field decays very rap-
idly for w/£2 outside the region (1 — B )y?, (1 + B8 }»?); Fig.
5(a) illustrates this. For small values of |k|#, however, this is
no longer true, as Fig. 5(c) ((k|# = 2) and Fig. 6 {|k|# = 0.5)
show.

CONCLUSION

In this paper, an integral-equation formalism is devel-
oped for the three-dimensional, relativistic scattering of elec-
tromagnetic waves by an object that is.in translational mo-
tion with respect to a source of electromagnetic radiation.
The theory applies to objects or arbitrary size, shape, and
physical composition and the field expressions that are ob-
tained are valid for arbitrary positions of the observer with
respect to the moving obstacle. In this respect, the formalism
is more general than the ones published up to now. Also, an
attempt has been made to make the presentation of the trans-
formation schemes involved more transparent.
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APPENDIX. LORENTZ TRANSFORMATION OF A
UNIFORM PLANE WAVE WITH SINUSOIDAL TIME
DEPENDENCE

A uniform plane wave with angular frequency (2, wave
vector k, and plane-wave amplitude [ f'] in the laboratory
frame K, as given by (39), is also a uniform plane wave in the
obstacle frame K ', but now with angular frequency {2, wave
vector k', and plane-wave amplitude [ /*]. The quantities
7', X, £2, and k are interrelated through®

2' =y - vk

and

(A1)

K = (i, XK)Xiy + 7{ — V2 /co + iy Ky}, (A2)
where i and y are given by (3) and (4), respectively. The
relations between [ 7] and [ f7] can be obtained from (7)-(9)
by replacing [F'] by [ f] and [F"] by [ /1.
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