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Pulsed electromagnetic radiation from a line source in a two-media configuration
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The pulsed electromagnetic radiation from a two-dimensional line source in a lossless two-media
configuration is investigated theoretically. The author’s modification of Cagniard’s technique is
used to derive closed-form expressions for the electromagnetic field components anywhere in the
configuration. Numerical results are presented pertaining to the incident, the reflected, and the
transmitted wave for different positions of the source and the observer, as well as for different
contrasts of the two media. Also, the corresponding total-field plots are shown. In an appendix,
the modified Cagniard contours pertaining to a lossless N-media configuration are discussed and
some two-media modified Cagniard contours are shown.

1. INTRODUCTION

With the availability of sources of electromagnetic
radiation that can generate pulses of very short
duration, the demand arises for time-domain solu-
tions of electromagnetic problems in certain ideal-
ized model situations. As far as the mathematical
techniques are concerned, solutions of practical
importance in a variety of cases can be obtained
by applying a one-sided Laplace transform with
respect to time and subjecting the resulting expres-
sions for the relevant field quantities to an appropri-
ate inversion technique. Of the latter, the Fast-
Fourier-Transform technique and the Singularity
Expansion Method [Baum, 1976a,b] are by now
well known., For a number of configurations,
however, an attractive alternative is furnished by
the present author’s modification of Cagniard’s
technique that has found wide application in the
theory of seismic waves [Cagniard, 1939, 1962;
de Hoop, 1958, 1960, 1961; Achenbach, 1973]. Also,
a few electromagnetic problems have been investi-
gated along these lines [de Hoop and Frankena,
1960; Frankena, 1960; Langenberg, 1974].
~ In the present paper, the modified Cagniard
technique is used to calculate the electromagnetic
field that is generated by a pulsed line source,
located in one of two adjacent, nonconducting half
spaces that show a finite contrast in their dielectric
and magnetic properties. The attractiveness of the
method lies in the fact that in our case (and in
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others as well) closed-form expressions are obtained
for the electromagnetic field components in their
dependence on position of observation and time.
Expressions for the reflected field have been ob-
tained before [ Felsen and Marcuvitz, 19731, albeit
in a slightly different form. The expressions for
the transmitted field are of greater complexity and
are, in their present form, believed to be new. If
the speed of wave propagation in the source-free
medium exceeds the speed of wave propagation
in the medium in which the source is located, a
lateral wave with a wedge-like wave front occurs
in certain domains of observation. (In the frequency
domain, the latter phenomenon corresponds to the
occurrence of a totally-reflected wave.)

Numerical results are presented for a number
of illustrative cases, as far as type of line source
(electric or magnetic) and electromagnetic contrast
of the two media are concerned.

In seismology, the modified Cagniard technique
has been used in a variety of situations. The most
complete solutions for the half-space problem have
been reported by Johnson [1974] . He has computed,
at an arbitrary point of observation, the particle
displacement due to a concentrated force acting
at an interior point of the medium. The most
complicated terms in his expressions are the propa-
gation factors that contain the two wave speeds
of the isotropic solid. Appendix A of the present
paper demonstrates that propagation factors con-
taining N wave speeds (N = 2), such as occur
in layered configurations, can be dealt with effec-
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tively by employing a fast numerical routine that
determines the proper modified Cagniard contours.
The ingredients are: a numerical implementation
of (A6) to obtain the arrival time of the relevant
wave, followed by an iterative procedure that takes
(A23) as a starting value for the body wave contour
and (A24) as a starting value for the lateral wave
(if present) contour; it is terminated as soon as
(A3) is satisfied to the desired degree of accuracy.
Our computations of the transmitted field (a case
where N = 2) show that even the peculiar Cagniard
contours shown in Figure 13 are computed in a
few seconds on an IBM 370/158 computer.

At this point is may be remarked that, even before
the work of Johnson [1974], authors considered
special situations where only the Cagniard inversion
of a propagation factor containing a single wave
speed is required. These include: the surface dis-
placement due to an interior source, the interior
displacement due to a surface source, or the even
simpler cases of epicentral displacements or surface
displacements due to a surface source.

Application of the modified Cagniard technique
to cases where anisotropic media are involved leads
to difficulties of a different kind. These have been
dealt with by Burridge [1971] and by Suh et al.
[1974].

2. DESCRIPTION OF THE CONFIGURATION

We consider the electromagnetic field that is
generated by a pulsed line source that is positioned
parallel to the plane interface of two semi-infinite
media occupying the half spaces D, and D,. Their
electromagnetic properties are described by a scalar,
positive permittivity ¢ and a scalar, positive perme-
ability p. This implies that the two media are linear,
homogeneous, isotropic, time-invariant, and loss-
less in their electromagnetic behavior. We let

in D, (1
in D, @

e=¢ and p=p,

and p=yp,

€ =g,

To locate a point in the configuration, we employ
the coordinates x,y, z with respect to a given ortho-
gonal Cartesian reference frame that is specified
by an origin O and three mutually perpendicular
base vectors of unit length i,, i, i,, that, in the
given order, form a right-hand system. The refer-
ence frame is chosen such that

D: —x<x<»n —-xm<y<on —-w<z<0 (3)

pulsed line source

Fig. 1. Pulsed, electromagnetic line source in the presence of
the plane boundary of two semi-infinite media.

D, —o<x<o, —w<y<on 0<z<ow G

The time coordinate is denoted by ¢.

The configuration is excited by a line source that
is located at x = 0, —» <y < o, z = —h_, with
h, > 0. Hence, the source is located in D, and
h.is the distance from the line source to the interface
of the twomedia. The source distribution is assumed
tobe independent of y. Asa consequence, the entire
electromagnetic field is two-dimensional and
independent of y (Figure 1).

3. ELECTROMAGNETIC FIELD IN THE
CONFIGURATION

The electromagnetic field in the configuration is
described in terms of the electric field strength E
and the magnetic field strength H. The action of
the source is characterized by specifying the volume
densities of its electric current J and its magnetic
current K. In any domain where the field quantities
are continuously differentiable, they satisfy the
electromagnetic field equations (SI units are used
throughout the paper):

VxH=ed,E+ 1 5)
VxE=—psH-K (6)
Ve(edE+J)=0 Y
Ve (maH+K)=0 (®

where partial differentiation is denoted by the




operator 4. In accordance with the notation adopted
in section 2, we write

E=E, and H=H, inD, 9)
E=E, and H=H, inD, (10)

Outside the source, that is located in D, we have
J = 0 and K = 0. Across the interface of the two
media, the boundary conditions

lim {El,x’ El‘y’ HI.X’HI,)'}

210

= lilm (E,., E,,, H,,, H,,} forallxandy (11)
z]0

hold. Further, the primary field, i.e., the field
generated by the source, should travel away from
the source and the secondary field, i.e., the field
generated by the secondary sources at the interface,
should travel away from the interface (radiation
condition). In media of the type under consideration,
electromagnetic waves travel at the speed

c=(ep) " (12)
where

c=c¢, inD, (13)

c=¢, inD, (14)

We assume that the source starts to act at the instant
¢ = 0. Prior to this instant, no electromagnetic field
is assumed to be present in the configuration (initial
condition).

In the course of the analysis, it is advantageous
to introduce the three constituents that together
form the total field. These are: (a) the incident
field {E', H'}, i.e., the field that the source would
generate if no boundary were present; (b) the
reflected field {E", H"}, i.e., the difference between
the total field in D, and the incident field: E" =
E, — E, H = H, — H’; (c) the transmitted field
{E, H'}, which is nothing but another name for
the total field in D,: E' = E,, H' = H,. Each of
these field constituents requires a separate treat-
ment.

Next, we take into account the two-dimension-
ality of the problem. To this end, we decompose
each vectorial quantity into a component parallel
to the line source (this component is denoted by
the subscript ||) and a component in the plane
perpendicular to it (this component is denoted by
the subscript 1). For example, we write
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E=E, +E,, etc (15)

while
V=V, _ (16)
since V| = i,6, = 0. Substitution of (15) and (16)

in (5)-(8) shows that as far as the electromagnetic
field equations are concerned, two mutually uncou-
pled fields are generated, namely, an E-polarized
field for which E, # 0 and H, = 0, and an
H-polarized field for which H # 0and E, =
0. Since neither the boundary conditions nor the
radiation condition nor the initial condition lead
to coupling between the two types of polarization,
the two types of field exist independently. In the
final analysis, they will be discussed separately.

4, GENERAL STRUCTURE OF OUR FIELD
REPRESENTATIONS

To carry out our analysis, we cast the field
representations in a particular form that is charac-
teristic of the modified Cagniard technique. First,
we subject the field quantities to a one-sided Laplace
transform with respect to time. One of the charac-
teristic features of the Cagniard technique is that
the relevant transform variable s is taken to be
real and positive. Let us illustrate the procedure
by considering the electric field strength. Denoting
the Laplace transform of a quantity with respect
to time by a circumflex over the relevant symbol,
we have
BE(x,zs5) = S exp(—st)E(x, z, 1) dt 7

[¢]

We restrict a possible growth in time of the source
strength to an exponential one at most and choose
s so large that the right-hand side of (17) exists.
Next, we subject the thus-transformed quantities
to a Fourier transform with respect to the ‘‘horizon-
tal’’ coordinate x. To avoid, however, the introduc-
tion of symbols that are not needed in the final
evaluation of the expressions, we write this Fourier
transform as a two-sided Laplace transform [Van
der Pol and Bremmer, 1950], the transform variable
p of which is purely imaginary. The quantity thus
transformed is denoted by a tilde over the relevant
symbol:

E(p, 25 = S exp (spx)E (x, z, s)dx

—o0

with Re(p) =10 (18)
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The (real, positive) factor s in the exponential
function is introduced here for later convenience.
On account of Fourier’s theorem, the inverse of
(18) is

exp(—spx)E(p, z,5)dp (19

E(x, z,5) = (s/2mi) S
Once E has been determined, the representation
(19) is used to arrive at an expression for E(x, z, t).
This is accomplished by a specific scheme of
transformations in the complex p plane, followed
by an application of the uniqueness theorem of
the one-sided Laplace transform (17). Details of
this procedure depend on the location of the singu-
larities of E(p, z,5) in the complex p plane and
the latter differ for the incident, the reflected, and
the transmitted field. Therefore, the three field
constituents will be discussed separately.

5. INCIDENT FIELD AND ITS REPRESENTATION

In this section we determine the representation
of the type (19) for the incident field. This field
satisfies (5)-(8), with ¢ = ¢, and p = u, in the
entire space. For the localized source of Figure
1 we have

J=j()d(x,z+ h,)
K=k()3(x,z+ h,)

(20
@D

After applying the transformations (17) and (18),

we arrive at the expressions given below.
E-polarized field

Eiu = [-pj i — (P F yi)x k, 1@v)™
cexp(—svy,lz+ h,|) whenzZ —h, (22)

H. = [(-pi, T v,i,) x iy — ek + ()7 (—pi F i)
AP FviL) k3 @y) Texp(—sy |z + A,))

whenzz —h, (23)
H-polarized field

H'y = [(—pi, ¥ vi)x ], —ek; 12v) "
cexp(—svy,|z+ h|) whenzz —h, (24)

n

E'| = [—mj, + (51)*1("Pix + 'Yliz){(_Pix Fy,i,)e jJ.}
= (=pi, F i) xky 1Q2v,) " exp(=sv,|z + h,])

when z = —h, (25)

in which
vi=(01/c—p*)'""* with(..)'”>>0 forRe(p)=0
(26)

The choice of the square root, indicated in (26),
ensures that the right-hand sides of (22)-(25) are
bounded as [z] — o, thus representing waves
travelling away from the source.

6. REPRESENTATIONS FOR THE REFLECTED AND
THE TRANSMITTED FIELD (E-POLARIZATION)

In this section we apply the transformations (17)
and (18) to determine the representations of the
type (19) for the reflected and the transmitted field
that is E-polarized.

Reflected field. The reflected field is obtained
as

EY =R.E| (p,0,5) exp(sy,2) with—w<z<0
27
(28)

H =pni'(pi,— v,i,)xE} when —0 < z<0

in which R, denotes the electric field reflection
factor for E-polarized waves and v, is given by
(26).

Transmitted field. The transmitted field is ob-
tained as
EY = T.E| (p,0,5) exp(—svy,z) with0<z<oo
(29
(30)

—1

H = p; " (pi, + v,i,) x E| when0<z<w

in which T, denotes the electric field transmission
factor for E-polarized waves and v, is given by

v, =(1/c3=p)'"* with(...)"”*>0 whenRe(p) =0
2 )4

GD

Applying the boundary conditions (cf. (11)), we
obtain

(32)
(33)

Re =W/t = ¥2/ )/ (Vi /1y + ¥a/ 1)
Te=Cvi/p)/ 0/ + 32/ 1)
7. REPRESENTATIONS FOR THE REFLECTED AND
THE TRANSMITTED FIELD (H-POLARIZATION)

In this section we apply the transformations (17)
and (18) to determine the representations of the




type (19) for the reflected and the transmitted field
that is H-polarized.

Reflected field. The reflected field is obtained
as

I:I’H = R,,I:I"II (p,0,5) exp(sy,z) with—0<z<0
(34

El = -7 (pi, —v,i.)x H’I} when e <z<0  (35)

in which R, denotes the magnetic field reflection
factor for H-polarized waves and v, is given by
(26).

Transmitted field. The transmitted field is ob-
tained as

H'u = Taﬁiu (p,0,5) exp(—sv,2) with0<z<ow
(36)
(37N

E! = —&; ' (pi, +v,i,)x Hj when0<z<w

in which T, denotes the magnetic field transmission
factor for H-polarized waves and v, is given by
(31). Applying the boundary conditions (cf. (11)),
we obtain

Ry=(v/ei = Ya/e)/ (vif&y + Y2/ E2)
Ty=Qvi/e))/(vi/e + v, e)

(38)
(39)

8. MODIFIED CAGNIARD TECHNIQUE

In this section we outline the steps that will lead
from the results of sections 5, 6, and 7 to the
expressions for the field constituents in their depen-
dence on position of observation and time. In their
simplest form, the transformed field quantities show
the following structure:

Incident field

U'= f(s)exp(—sv, |z + h,|)/2y, with—w<z<o
(40)
Reflected field
U= f(s)Rexp [~sv,(h, — )] /2y, wWith —» < z<0
| @1
Transmitted field
U'= f(s)Texp [—s(v,h, +v,2)]/2v, vs;\ithO <z<ow
42)

In these expressions, U stands for one of the field
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components, f(s) stands for the Laplace transform
of the source strength as a function of time, R
is a reflection factor, and T'is a transmission factor.
Now it is important to observe that v,, v, and
R, T, R,, T, onlycontainp as transform variable,
but not s. Consequently, the right-hand sides of
(40)-(42) only contain s at the positions where this
is indicated explicitly. Substituting the right-hand
sides of (40)-(42) in representations of the type
(19), we arrive at

U =sf(s)G""(x, z,5) (43)
in which
G'=(Qm)™ r‘ exp [~s(px + ¥,|z + b, )] (2y,) 'dp
(44)
G = (Q2m)™! r Rexp [—s{px +v,(h, — 2)}]
- (2v,) 'dp (45)
G'=Qm)"! r Texp [—s(px + v,h, + v, 2)]
C(2v) 7' dp (46)

The integrands in (44)—(46) admit analytic continua-
tion into the complex p plane, away from the
imaginary axis. The analytic continuation is taken
such that Re(y,) = 0 and Re(y,) = 0 in the entire
part of the p plane into which the path of integration
is deformable. This implies that branch cuts are
introduced at Im(p) = 0, 1/c, < |Re(p)| < 0,
and at Im(p) =0, 1/¢, < |Re(p)] < .

It is easily verified that the reflection and trans-
mission factors as defined by (32), (33), (38), and
(39) contain no other singularities than the branch
points p = x£1/¢, and p = +1/¢,; in particular,
their denominators do not vanish in the cut p plane.
By deforming, in the right-hand sides of (44)-(46),
the original path of integration, Re(p) = 0, into
a so-called modified Cagniard contour (see Appen-
dix A), the resulting expressions are all integrals
of the general form

G = S ' exp(—sT1)g(x, z,7)dr 47

i

in which 7 is a real variable of integration and ¢,
and 7, are non-negative. On account of the unique-
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Fig. 2. Position of source and observer when observation takes
place in D, and D,, respectively.

ness of the one-sided Laplace transform with a
real positive transform variable [ Widder, 1946], (43)
and (47) lead to

0, when —0o <t <{,

t
S 8,f(t —g(x,z,m)dr, whent, <t<1y,

n

L3
S 8,f(t —v)g(x,z,7)d7, whent, <t <o

4
48)

where the convolutjion theorem and the differentia-
tion rule of the Laplace transform have been used.
From (48) it is clear that ¢, and ¢, can be identified
with arrival times of wave fronts.

. The modified Cagniard contours to be used in
the representations of the incident, the reflected,
and the transmitted wave are different and hence
each of these field constituents will have a dif-
ferently structured function g associated with it.
Details of this will be given below. To facilitate
the interpretation of the final results, the coordinates
of the observer will be called x = d, z = —h,,

with A, = 0, when observation takes place in D,
while the coordinates of the observer will be called
x =d, z = h,, with h, = 0, when observation
takes place in D,. Since the components of the
field show either even or odd symmetry with respect
to the plane x = 0 (the type of symmetry is easily
inferred from the relevant formulas), we only con-
sider non-negative values of d. Hence, d, h,, and
h,, as well as A_denote true distances (Figure 2).

9. NUMERICAL RESULTS

In this section we present some numerical results
pertaining to the configuration shown in Figure 1.
Before turning to the electromagnetic field compo-
nents proper, we determine the time-domain ex-
pressions for g', g, and g’ that result from (44),
(45), and (46), respectively.

Incident field. 1In the right-hand side of (44), the
results pertaining to (A16) apply. Using (A23) we
arrive at

0, when —w<t<T'

g = 1 _ (49)
m— when 7' <1 < o

in which the arrival time 7' of the incident wave
is given by

T'=[d"+(h ~h)1"/c, (50

. The right-hand side of (49) is the fundamental wave

shape of a two-dimensional, scalar (body) wave
originating from a line source with unit-pulse time
dependence. This wave shape is represented in
Figure 3.

Reflected field. In all cases, the reflected field
contains a body-wave contribution. To this part
of the field, the results pertaining to (A16) apply,
as (45) shows. Let 6, denote the angle introduced
through

sin(8,)=d/{d> + (h, + h,)*1'"? 5D
cos(®,) = (h, + h,)/[d” + (h, + h)*]'"? (52)

then application of (A23) to the right-hand side of
(45) yields

0, when —o0 <1< TV

Re [R(p""™)]

27‘_(1_2 _ Tr‘BWZ)I/Z ’

when 77 <7 < »

(3)
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Fig. 3. Fundamental wave shape of a two-dimensional, scalar
(body) wave originating from a line source with unit-pulse time
dependence.

in which the arrival time T"®" of the reflected
body wave is given by (A23) and (A9):

T = [d>+ (h, + h)*]"* /e, = (h, + h))/c, cos(8,)
(54
and where (cf. (A23)):
d  h,+h
S rany Ul hy
. [Tz d*+ (h, + h,)?

2
(4]

rBW

p

172
] when T7*¥ <7 < 0

(53)

In Figures 4 and 5 we have plotted some numerical
values of the factor by which the fundamental wave
shape, as occurring in (49) but with T' replaced
by T7"?%, has to be multiplied to yield g"*". The
results marked ‘‘E-polarization’” apply to the case
R = R, (cf. (32)); the results marked ‘‘H-polariza-
tion’ apply to the case R = R,, (cf. (38)). Figure
4 illustrates the case ¢, > c,; Figure 5 illustrates
the case ¢, < ¢,.

If ¢, < ¢,, a lateral-wave contribution to the
reflected wave occurs, in addition to the body-wave

2 3
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Fig. 4. The quantity 2n(r® — T"%?)!/?¢"®¥ as a function of

v/ T"®Y for different positions of observation (¢, > c,).
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Fig. 5. The quantity 27 (z* — T""%?)'/2g"®¥ as a function of

7/ T"PY for different positions of observation (¢, < ¢,).

contribution, for those points of observation where
sin(8,) > ¢,/c,. Application of (A24) to the right-
hand side of (45) yields for this part of the field

0, when —oo <1< 7"V

Im [R(p""™)]

gr,LW = 211'(T"BW2 _ TZ)I/Z ’

when T7"Y < ¢ < T"B¥

0, when T"*¥ <1 <w (56)

in which the arrival time T~"Y of the reflected
lateral wave is given by (cf. (A13)):

Tr.LW — d/C2 + (l/clz _ l/C§)l/2(h‘ + hl) (57)

while T"?¥ is given by (54). Further, we have (cf.
(A24)):

d h, + h,
= T —
d*+h,+h)? d*+ (h,+ k)’

[dz+(hj+h,)2 2]"2
N A AL
L

when TV <1 < 77V

LW

p

(58)
In Figure 6 we have plotted some numerical values
of the factor by which the fundamental wave shape,
as occurring in (53) but with the role of observation
time 7 and arrival time of the reflected body wave
T~®Y interchanged, has to be multiplied to yield
g""". The results marked “E-polarization’’ apply
to the case R = R, (cf. (32)); the results marked
“‘H-polarization’ apply to the case R = R, (cf.
(38)).

Transmitted field. The transmitted field con-
sists of a body wave only. Now, the results pertain-
ing to (A3) apply with N = 2 as (46) shows. Let
0, and 0, denote the angles introduced through (cf.

(AT)):

(1/¢))sin(®,) = (1/¢,) sin(®,) (59
and
d— h, tan(8,) — h, tan(8,) = 0 (60)

then, (46) leads to

0, when —wo <5< T’
g =4Qm 'Im [T(P)v,(p") 'a,p'],

when 7% < 7 <

(61)
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Fig. 6. The quantity 2w (7"%%* — +*)"/?g""¥ as a function of
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in which the arrival time 7" of the transmitted wave
is given by (cf. (A9)):

T'=h,/c cos(8,)+ h,/c, cos(8,) (62)

while p = p’ is the part of the body-wave modified
Cagniard contour that follows from

pd+yh +vh =1 (63)

and is situated in the first quadrant of the complex
p plane. In Figures 7 and 8 we have plotted some
numerical values of the factor by which the funda-
mental wave shape, as occurring in (49) but with
T’ replaced by T, has to be multiplied to yield
g'. The results marked ‘E-polarization’” apply to
the case T = T, (cf. (33)); the results marked
““H-polarization’’ apply to the case T = T, (cf.
(39)). Figure 7 illustrates the case ¢, > ¢,; Figure
8 illustrates the case ¢, < c¢,.

The results presented in Figures 4-8 can be used
to construct plots of the electric (magnetic) field
strength at a certain position of observation against
time. A few examples are shown in Figures 9-11.

As electric current source strength we have taken

0, when —wo<¢<0

iy = Ii,, when0<t<ow

and hence j | = (I,/9)i, (64)

As magnetic current source strength we have taken

0, when —0<r<0
ky = 4V,i,, whenO<t<cw
and hence k, = (¥,/9)i, (65)

Hence, the fields shown are of a Green’s function
nature. For the media we have taken two (lossless)
dielectrics. The results for other field components
or for other types of excitation follow from the
results of sections 5-7 and a subsequent application
of the modified Cagniard technique. This involves
not more than the inclusion of additional algebraic
factors in the expressions to be evaluated along
the modified Cagniard contours and—for time
dependences that differ from (64) and (65)—the
evaluation of the convolution integral (48). This
convolution takes into account the actual pulse
shape of the source. The frequency range of this
pulse should be limited such that the idealization
of lossless media is permitted.

The computations were performed on the IBM
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370/158 computer of the Computing Center of the
Delft University of Technology. The program was
written in PL /1. Typical computation times for a
single plot of the type shown in Figures 9-11 are
10 seconds.

APPENDIX A: SOME GENERAL PROPERTIES OF
MODIFIED CAGNIARD CONTOURS

In this appendix we outline some general proper-
ties of modified Cagniard contours as they occur
in problems associated with the propagation of
pulsed waves in a layered configuration consisting
of N different media (N = 1). The media occupy
the domains D, ..., D,,, respectively. The modified
Cagniard technique starts from an integral repre-
sentation for the one-sided Laplace transform of
a field quantity with respect to time of the following

general form ‘
3

G = Q2w S Texp{—s(pd+z'y,,h,,>:|

—i n=1

*@2v,)'dp (AD)

In (A1),

vo=(1/c: - p*)""* with(...)'"*= 0 alongRe(p) =0
(A2)

denotes the propagation coefficient of a wave
propagating in the domain D, and ¢, is its speed
of propagation, d is the ‘‘horizontal’’ distance from
the source to the observer and A, is the “‘vertical”’
path length of the trajectory that the wave has
traversed in D,. Hence, the exponential function
in (Al) represents the propagation factor of the
disturbance along the specified trajectory. The
factor T in (Al) is algebraic in p and accounts for
the transfer of the wave motion across the interfaces
of the configuration (reflection and transmission);
it contains v,, ..., v, and the medium parameters.
Finally, v, is the propagation coefficient in the
medium where the source is located.

The main step in the modified Cagniard technique
consists of properly deforming the path of integra-
tion in the right-hand side of (Al). To this end,
we continue the integrand analytically into the




complex p plane, away from the imaginary axis,
such that Re(v,) = 0 in the entire part of the p
plane into which the path of integration is deform-
able. This implies that branch cuts are introduced
at Im(p) = 0, 1/¢c, = |Re(p)| < o for all n =
1, ..., N. The deformed path of integration (modified
Cagniard contour) is now chosen such that the
propagation factor becomes of the form exp (—s7),
where s is the (real and positive) Laplace-transform
variable and 7 is a real variable of integration (later
to be identified with time). At infinity, supple-
menting circular arcs join the two paths. The con-
tribution from these arcs vanishes provided that
the modified path is located in Re(p) > 0 and that
the algebraic factors in the integrand in (Al) go
to zero at infinity. In the applications that we
consider, the latter condition is always satisfied.
If the integrand has poles in the domain bounded
by the original path of integration Re(p) = 0, the
modified Cagniard contour, and the circular arcs
at infinity, their contribution should be properly
taken into account. The modified Cagniard contour
is not allowed to intersect one of the branch cuts
introduced above. If it would be tempted to do
s0, it has to be supplemented by a loop integral
around the relevant branch cut.

The equation satisfied by the modified Cagniard
contour(s) is found as

N

Re(pd+ > v,h,) =
n=1

. (A3)
Im(pd + 3 v,h,) =0
n=1

Since v, is real and positive when —1/¢, < Re(p)
< 1/c,, Im(p) = 0, (A3) is certainly satisfied if
—min(l/¢c,, ...,

1/cy) <Re(p) <min(l/c,, ..., 1/cy),

Im(p) =0 (A4

Note that if for one of the values of n we have
h, = 0, the restriction pertaining to the corre-
sponding c, in (A4) drops. Further, (A3) is satisfied
along a certain path in the complex p plane that
is located symmetrically with respect to the real
p axis (because Schwarz’s reflection principle ap-
plies to the left-hand side of (A3)) and goes to
infinity. Hence, the latter contour and (parts of)
(Ad) are possible candidates for modified Cagniard
contours.
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First, we investigate the path in the complex p
plane that goes to infinity. This part of the modified
Cagniard contour corresponds to a body wave. Let
PV with TV =t <o

p=p (AS)

denote its parametric representation in the first
quadrant of the complex <P plane, then the total
path consists of p = p®¥ and p = pV*, where .
* denotes the complex conjugate. The lower limit
T®Y of 7 in (AS5) is the arrival time of the relevant
body wave. This value is reached at the point of
intersection of (AS5) with the real p axis, where
the mlmmum value of v leads to an infinitely large
value of 9_p°®%. By differentiating (A3) with respect
to T, we obtain

a.p™" = 1/[d -> (p*’w/mhn}

Let 6, ..., 8,, be angles that .are mutually related
through Snell’s law of refraction; then

(A6)

p=(1/c)sin®)=..=(1/cy)sin(®,)

makes the denominator of the right-hand side of
(A6) vanish provided that

N
- h,tan(s,) =0

(A7)

(A8)

Substitution of (A7) in (A3) yields

V= (A9)

- C, cos(G )

which is the total travel time for a disturbance to
propagate from the source to the point of observa-
tion along a trajectory that is in accordance with
Fermat’s principle (Figure 12),

If all terms in the summation of the left-hand
side of (A3) are present (i.e., if none of the values
hy, ..., hy is zero), the condition (A7) ensures that
p = p°" intersects the real p axis between p =
0 and Re(p) = min(l/c,, ..., 1/cy), Im(p) = 0.
In this case, the integral along Re(p) = 0 equals
the integral along p = p® and p = p®V* plus
contributions from possible poles. Then, we have

G = G®V + contribution from poles (A10)

where, using Schwarz’s reflection principle, G®%
is from (A1) obtained as
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G® = (1/'n')Im|: S exp (—s1) T(2y,)"a,p‘“"d7}

T7BW
(Al1)

Let us now consider the case that one of the values
hy, ..., hy, h,, say, is zero. Then, no term corre-
sponding to v,, is present in (A3) and the situation
may arise that, due to the presence of v,, in the
expression for T, an additional loop integral along
the branch cut of v,, must be included in order
to apply Cauchy’s theorem. The extra integral is
needed if p = p®% intersects the real p axis at
a point for which Re(p) > 1/¢,, Im(p) = 0.
Obviously, this can only happen if 1l/c, <
min(l/¢,, ..., 1/¢p_1s 1/Cppers v 1/cy). The
relevant part of the modified Cagniard contour
corresponds to a lateral wave. Let

p=p"Y(@ withT"V =<7 (A12)

denote its parametric representation in the first
quadrant of the complex p plane, then the lateral-
wave part of the modified Cagniard contour consists
of p = p*¥ and p = p“¥*. The lower limit 7"
of 7 in (A12) is the arrival time of the relevant
lateral wave. This value is reached at p = 1/c,,.
Substitution of this value in (A3) yields

M—1

T =d/c,+ > (1/¢;—1/¢i)'"h,
n=1

+ > (/= 1/cx)'*h, (A13)

n=M+1
where the square roots are all real and positive.
In case the extra loop integral is needed, the integral
along Re(p) = 0 equals the integral along p =
PLW, P — PLW*, p = pBW’ and p —_ pBW* pluS
contributions from possible poles. Then, we have

G = G + G®Y + contribution from poles (Al14)

where, using Schwarz’s reflection principle, G*%
is from (A1) obtained as

TBW

GV =(/m Im[ S exp(—ST)T(Z'y:)_lanLwdT:l

LW
(A15)

while G®Y is given by (All).

In case only a single term is present in the
summation on the left-hand side of (A3), analytic
expressions for the right-hand sides of (AS) and
(A12) can be obtained. If more than a single term
is present in the summation on the left-hand side
of (A3), no simple analytic relationships exist and
the right-hand sides of (A5) and (A12) will have
to be determined with the aid of numerical tech-
niques. In most cases, these are of an iterative
nature and hence, they can be speeded up by
choosing the starting value judiciously. Now, the
values p = P®V and p = P"V obtained from the
equation

pd+(1/C*-p")'*H=1

where H and C are chosen such that (A16) approxi-
mates (A3), can serve as such. In (A16), we select
the values of H and C in such a way that (A16)
coincides with (A3) as |p| — « and at p = 0.
From

(A16)

N

pgw27/<d—i2hn>, asT— o (A7)
n=1

and

P®™ =</(d—-iH), asT— » (A1B)

it follows that




N
H=>h,

(A19)
n=|
while the conditions
N
PPV =0 atr=> (h,/c,) (A20)
and
P =0 atr=H/C (A21)
lead to
1/C= [Z <hn/cn>}/f1= [2 wm}/(E hn>
n=| 4 n=1 n=1
(A22)

Solving (A16), the starting value P®% of p®% in
the iteration process is then given by

d iH
PRV = T+ - (d*+ H*)/C*'?
d*+ H? d2+H"[ ( e
when (@ + H*)'?/C<r <o (A23)
and the starting value P*% of p*" by
d H
PLW= — d2+H2 CZ__TZ 1/2
d*+ H*? d*+ H*? I M ]
when H/C<r<(d>+ H»)'*/C (A24)

Note that the point of intersection (A7) of p =

p®% with the real p axis does not coincide with
the point of intersection of p = P®¥ as given by
(A23) with the real p axis.

Figure 13 shows a number of modified Cagniard
contours that have been used to evaluate the nu-

merical results presented in Figures 4-11.
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