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Summary

The propagation of time harmonic waves in a certain continuously layered
medium is considered. The wave number 2 = £({) is assumed to vary with
the Cartesian coordinate {; the law of variation is taken to be the one studied
by Epstein. An integral representation for the wave function in this
medium is derived. The method by which this is done is considerably simpler
thar the usual treatment of the problem with the aid of hypergeometric
functions.

§ 1. Introduction. We consider the propagation of one-dimension-
al time harmonic waves in a continuously layered medium. In such
a medium the wave number 2 = £({) is a continuous function of the
Cartesian spatial coordinate {. The complex wave function » = .
= u({) describing the one-dimensional wave motion in the medium
is assumed to satisfy the differential equation

d?u/dl2 4 [AR()]2w = O. (1.1)

The complex time factor is chosen as exp(—7wt); the dependence
of # on w (w = radial frequency) is not indicated explicitly.

One method of deriving properties of # = %({) is to find ap-
proximate solutions (usually of an asymptotic character) of (1.1)
for a rather general class of profiles & = &({) (see, e.g., Erdélyil),
Heading?), Broer3)).

A different method of gaining insight in the properties of » =
= u({) is to choose the function & = &({) in such a way that
exact analytical representations for the solutions of (1.1) can be
obtained. In this case the form in which the solutions of (I.1)
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appear should be not too complicated, whereas the function & =
= k(¢) should contain a number of parameters in order to cover
several cases of practical interest (see, e.g., Budden?), Wait?)).

The present paper belongs to the latter class of researches and
reconsiders the case that has been studied by Epstein®) (see also
Brekhovskikh?), Rawer8) and Budden?)), where the function
k= k(¢) is given by (2.4). The usual treatment of the problem
makes extensive use of the theory of the hypergeometric function.
In the present paper it is shown that a single integral represen-
tation for the wave function can be constructed directly from a
differential equation closely related to (1.1), by making use of well-
known properties of the gamma function.

§ 2. Formulation of the problem. Consider the linear differential
equation of the second order

[as + ba exp({)] d2w[dl? + [a1 + b1 exp(l)] dw/dl +
+ [ag + bo exp(l)] w = O, (2.1)

in which as, b9, a1, b1, a0 and dg are arbitrary constants and w =
— w(¢). Through the introduction of a new dependent variable,
(2.1) can be reduced to a differential equation of the type (I.1).
Let

w(Z) = (1 + (bafaz) exp(() ]/~ [ (bo)az) exp(()]H /™ u((), (22)

then u = w(C) satisfies the differential equation

d2u/dl? 4+ [R(£)]2u = 0, (2.3)
in which
2 AT 2 2 N2
I — WNROPE) (o
with
N3 gt \’\(4@06{2 — a?)/4al, (2.5)
N2 2 (4boby — b2) /452, (2.6)
M 8t L(ayfas — b1/b2)[1 + $(arfas — b1/ba)]. (2.7)

Equation (2.4) shows that the function &2 = &({) is essentially the -
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same as the one studied by Epstein®). From (2.4) it follows that

lim k()2 = N? (2.8)
{—>—0o0
and
lim [A(2)]2 = N3, (2.9)

For the sake of convenience we confine ourselves to real values
of ag, ba, a1, b1, ao and by, and define 2({) to be real and positive
when [£(()]2 > 0 and positive imaginary when [£({)]2 <O (in
particular, this convention holds for N and N‘z). In order that
k() be finite everywhere we further suppose as/b2 > O.

As the function & = E({) approaches a finite limit both as
{ — —oo and as { — oo, it is expected that (2.3) admits solutions
the asymptotic behaviour of which is given by -

u(l) = [A1 exp(eN1l) 4 By exp(—iNiL)] X ,
X [ 4+0o(l)] as {— —oc0 (2.10)
and
M(C) = [Az eXp(——zsz) —[— Bg eXp(’&NzC)J X
X [1+o(l)] as {—oo.  (2.11)
Now, the differential equation (2.3) is of the second order and,
consequently, has only two linearly independent solutions. This

implies that, between the coefficients in (2.10) and (2.11), there
exists a relation of the type

B1 = S1141 + S1243, (2.12)
By = S9141 + So2do, (2.13)

where S11, S12, Sa1 and Sgg constitute the “‘scattering matrix”.
From (2.2), (2.10) and (2.11) we obtain the expected asymptotic
behaviour of w = w({)

w(C) = (bz/az)*é‘(al/a” [Al eXp(oqC) —I— Bl GXp(azé')] X
X [1 4 o(l)] as ¢ — —o0 (2.14)

and

w() = (bafas) TH®” [Ag exp(Bal) + Ba exp(prl)] X

X [140o(l)] as { — oo, (2.15)

I
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where ‘
ay 3 — L(ay/as) + iN1, (2.16)
us 8 _ L(ay/ag) — iNy, (2.17)
4 — $(b1/b2) + N, (2.18)
8t _ 1(h1/bg) — iNg. (2.19)

We now consider Ay and Ag as given and proceed to construct
an integral representation for w = w({) which reproduces the term
containing A1 in (2.14) as { — —oo and the term containing 4z in
(2.15) as { — oo.

§ 3. Construction of the solution. Let w = w({) be represented by
w(¢) = (2mi) 7 [ exp(pC) W(p) dp, (3.1)

in which the function W = W(p) and the path of integration L in
the complex p-plane are to be determined. The right-hand side
of (3.1) is now substituted in (2.1). On the assumption that the
differentiations with respect to { can be carried out under the
integral sign, we obtain the following difference equation for
W = W(p):
(aap? + arp + ao) W(p) +

blba(p — 12 bp— 1) £ B W(p— 1) =0.  (32)
In obtaining the second term on the left-hand side of (3.2) it has
been assumed that W = W(p) is regular in the domain bounded
by L and L', where L’ originates from L by shifting it towards the
right over a distance 1. On account of (2.16)—(2.19), (3.2) can be
rewritten as '

aalp — o) (p — o) W(p) +
+ba(p— 1 —fo)(p—1— o) W(p—1) =0 (33
Using the difference equation of the gamma function I'(p + 1) —

— pI'(p) = 0, solutions of (3.3) can be obtained by inspection. It

is found that
I'(— o) I'(— o) I'(p —

W(p) = C1(bsfaz)? (=2 + }1(1 (—i i ﬂz)) (p — p1)

(p — B2) I'(p — B1) I'(—p + o)

F(l—l—p—ocl)

_I_

+ Ca(bafaz)? I . (3.4
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where C1 and Cg are arbitrary constants. Further, L extends to
infinity parallel to the imaginary p-axis; the sequences of simple
poles p = a1 + mandp = ag + mlie to the right of L, the sequences
of simple poles p = f1 — m and p = f2 — m lie to the left of L
(m =0, 1,2, ...) (fig. 1). On account of the behaviour of the gamma
functions as [Im p| — oo substitution of (3.4) in (3.1) leads to an
integral along L which is absolutely convergent for all finite real
values of C.
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Fig. 1. Path of integration L in the complex p-plane.

The value of the constants C; and Cg will be determined by
comparing (2.14) and (2.15) with a series expansion of w({). This
series expansion is derived from (3.1) and (3.4) by using an argu-
ment similar to the one employed in Whittaker and Watson19)
in connection with the hypergeometric function. Moving L away to
infinity to the right and applying the theorem of residues we
obtain '

w(l) = — E {Residue of exp(pl) W(p) at p = a1 + m} —

m=0

— E {Residue of exp(pl) W(p) at p = «g + m}
m=0
when ¢ 4+ In(bg/as) < O. (3.5)
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Moving L away to infinity to the left and applying the theorem
of residues we obtain

w(l) = % {Residue of exp(pl) W(p) at p = pa — m} +

— ozj]o {Residue of exp(pl) W(p) at p = 1 — m}
when ‘C + In(bg/as) > 0. (3.6)

The expressions for the residues are not difficult to obtain and
will not be reproduced here. Comparison of the first term on the
right-hand side of (2.14) with the term in (3.5) resulting from the
pole p = «1 gives
: I'(1 — o1 + PB2)
C1 = A1(ba/ag)~*, 3.7
1 1(ba/az) (o1 & o3) Tlox — f1) (3.7)
Comparison of the first term on the right-hand side of (2.15) with
the term in (3.6) resulting from the pole p = f2 gives

I'(l 4+ p2 — 1)
I'(B2 — B1) T'(—Pa + «2)
The other terms corresponding to m = 0 in (3.5) and (3.6) give,

in connection with (2.12), (2.13), (2.14) and (2.15), the elements of
the scattering matrix

Cy = Ag(bs/az)iNs (3.8)

T
su=() ThegTire—a @0
C )T o
Sm = (1) %;ﬁ;;;(cf)—ﬂrz(ﬁ P e

These results are in accordance with those of Epstein®). For a
detailed discussion of (3.9)—(3.12) we refer to Rawer8).

§ 4. Concluding remarks. Theintegral representation (3.1) of w(¢),
where W (p) is given by (3.4), is easily recognized as the integral
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representation of a certain hypergeometric function; likewise, (3.5)
and (3.6) are hypergeometric series. This shows the connection be-
tween the theory developed in § 3 and the usual treatment of the
problem in the literature®—9). However, the method given in § 3
has the advantage of reducing the necessary mathematical back-
ground for calculating the wave motion in an Epstein medium
considerably: a knowledge of complex integration and of the basic
properties of the gamma function are sufficient.

Finally, it is observed that by the substitution { = (z — 20)/D
an arbitrary reference level z = zp and a scale factor D (the
““thickness’” of the layer) can be introduced. From this, and the
fact that only ratios of the constants in (2.1) occur in the ex-
pression for w(), it follows that, without loss of generality, we can
make as = | and by = 1. Once the latter values have been chosen
the Epstein profile is completely determined by the three constants
N1, Np and M. However, through (2.5), (2.6) and (2.7), N1, Ng
and M are expressed in terms of a3, b1, a0 and bo. Hence, with the
restriction that the arbitrariness of Ni, Ngo and M must not be
destroyed, one relation between ay, b1, a0 and bo can still be chosen.
E.g., we can take a; = 0, which simplifies (2.2) (the choice a1 = b1
is not permitted, since then ai/as = b1/bs and, hence, M = 0).
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