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IMPULSIVE RADIATION FROM A VERTICAL ELECTRIC
DIPOLE SITUATED ABOVE A PLANE,
NON-CONDUCTING, EARTH

A.T. pE Hoor

SUMMARY

A vertical electric dipole, situated at a height 4 above .a plane, non-
conducting, earth, emits an impulsive electromagnetic wave. An expression
in closed form is derived for the Hertzian vector of the resulting electromagnetic
field in the air. :

1. Introduction

The electromagnetic radiation from an oscillatory electric
dipole in the presence of a plane earth has been investigated by a
large number of authors. The current in the dipole is usually
assumed to vary harmonically in time. The basic solutions of this
(pure) boundary value problem are due to SOMMERFELD (1) and
to WEYL (). Recently, however, the case has become of interest
where the time dependence of the current in the dipole is impul-
sive rather than harmonic. This leads to a mixed initial-boundary
value problem. Electromagnetic problems of this type have been
studied by PoriTsky (), VAN DErR PoL (%), Pexeris and ALTER-
MAN (%), BREMMER () and LeVELT (7). The method employed in
the present paper is a simplified version (8) of techniques devel-
oped by CAGNIARD (°) and by PEkErIs (1°) in connection with
seismic wave propagation problems. A combination of a Laplace
transform with respect to time and a two-dimensional Fourier
transform with respect to the horizontal space coordinates leads
to an expression in closed form for the Hertzian vector in the air.

The analogous problem for the horizontal dipole has been
solved by FRANKENA (11).
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2. Formulation of the problem

A Cartesian coordinate system X, y, z is introduced such that
the air occupies the half-space 0 < z < oo, whilst the earth occu-
pies the half-space — o0 <z << 0. The electromagnetic proper-
ties of the two media are characterized by their permittivity ¢
and their permeability u; their conductivity is assumed to be zero.
In the air we have ¢ = ¢, 4 = ui; in the earth we have ¢ = e,
u = pe. Further we introduce the velocities of propagation

v1 = (equ1)=1/2, 2.1)

Vg = (82#2)“1/2 . (2.2)
At x=0, y=0, z=h (h> 0) a vertical electric dipole
starts to radiate at the instant ¢ = 0; prior to this instant all field
quantities are assumed to vanish identically. The electromagnetic
field generated by this vertical dipole can be derived from a Hertz-
ian vector IT of which only the z-component is different from
zero. The electric field vector E and the magnetic field vector H are
expressed in terms of II through the relations

d2I1

| E = gl‘ad div II — 231 b—tz— ’ (2.3)
H = ¢ curl —3—11 . (2.4)
ot
In the region z > 0 we write
II = (o + ) i, (2.5
in the region z < 0 we write ‘
O=uwui,. 2.6)

The function wuo yields the primary field (i.e. the field that would
exist if the upper medium were unbounded)

o 1 f(l‘ — R1/1)1) .
Uy = 471:8]_ :Rl I (2‘7)
Whgre '
Ry = [x2 + 2 + (z — W)?1/2 (2.8)

and where f(f) denotes the moment of the dipole as a function
of time (f(f) = 0 when ¢ < 0). Maxwell’s equations together with
the boundary conditions (continuity of Eg, Ey, Hy and Hy, at
z = 0) lead to the following conditions for w1 = ui(x, y, z, ¥) and
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ug = us (x,y, z,t). The functions u; and us, together with their
first and second order partial derivatives, are assumed to be con-
tinuous in z > 0 and z <0, respectively. In the appropriate
half-spaces they satisfy the homogeneous wave equation

1 Dzul,z
v21,2 d12

where 4 = 32/0x2 4 32/dy2 + 22/0z2. The boundary conditions
lead to

Auy 2 —

=0, (2.9

. Qg , UL\ 1. U
S, (Tﬁ Tz) = Jim 37 (2.10)
g1 lim (uo + 1) = &2 im uy . ' .11
z—>+0 z—>—0 ' ,

Further w (x, y, z, t) =0 and wu (x, y,z, 1) = 0 when ¢ <O0.

3. The field in the air

A combination of a ILaplace transform with respect to
and a two-dimensional Fourier transform with respect to x and
y leads to an expression in closed form for the Hertzian vector
in the air. Details of the procedure employed can be found in a
paper by DE Hoop and FRANKENA (1%). The result is that w1 can
be written as the following convolution integial

Ui (xa ¥, z, t): 0 ¢ (O<t<R2/vl) ? (3.1)
f £t —1)g1(%3,2,7)d7 (Refor < ¢ < o),
Rylvy
where ,
Rs =[x + y2 + (z + Y2 (3.2)

(R2 = distance from the image of the source to the point of obser-
vation) and

_ 1 /2 e2y1 — 81)/2} .
nnn= gape [0 Re [t ar, 3
in which the following substitutions have to be made

v = (g% + 1/v2 — pH1/2 (Rey1z0), (3.4)
y2 = (q% + 1fv2 — p?)I/2 (Rey220), (3.5)
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p = (/R 7 + i[(z+H)/R2(* — RZ/v%)1/% cos (3.6)
q = (v¥/R3 — 1v))2sin p, (3.7)

r=(x% + Y2 (38

In (3.1) the prime denotes differentiation with respect to the argu-
ment of the function f. The integral on the right-hand side of
(3.3) can easily be computed numerically.
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