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Summary

A modification of Cagniard’s method for solving seismic pulse problems
is given. In order to give a clear picture of our method, two simple problems
are solved, viz. the determination of the scalar cylindrical wave generated
by an impulsive line source and the scalar spherical wave generated by an
impulsive point source.

§ 1. Introduction. The application of Cagniard’s!) method in
obtaining exact solutions of three-dimensional seismic pulse prob-
lems leads to complicated expressions for the components of the
displacement vector in the elastic solid. This is partly due to the
fact that in a homogeneous, isotropic, elastic solid two types of
waves, travelling with different velocities, occur. In order to give -
a clear picture of Cagniard’s method, Dix 2) applied it to a simple
problem in scalar wave propagation, viz. the determination of the
spherical wave generated by an impulsive point source located in
a homogeneous, isotropic, unbounded medium. Even in this simple
problern (the solution of which can also be obtained by less compli-
cated methods) quite a number of transformations of complex
contour integrals are involved. :

In the present paper it is shown that Cagniard’s method can
be simplified considerably if the corresponding modification for
two-dimensional problems as developed by the present author 3:4)
is taken as a guidance. Again, the aforementioned point source
problem will be considered; for reference, also the solution of the
corresponding line source problem will be given.

It is remarked that the resulting ‘method is also simpler than
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the technique employed by Pekeris5-10), which is slightly
different from the one due to Cagniard.

§ 2. The scalar wave generated by an impulsive line source. Let
%, v, 2 be Cartesian coordinates in three-dimensional space. A point
in space will be located by either its Cartesian coordinates, its
cylindrical coordinates 7, @, z defined through

x=7vrcosp, y=vrsing, 2=z (2.1)

with 0 <7 < oo, 0 £ ¢ < 2n, — oo <<z < oo, or its spherical
polar coordinates defined through '

x=Rsinfcosep, y=Rsinfsingy, 2= Rcosl, (2.2)

with0 = R<c0,0=0=nm 0=¢<2n
The two-dimensional wave function % = u(x,v,?) due to the
presence of a two-dimensional line source acting at x = 0, v = 0,
satisfies the two-dimensional scalar wave equation
0%u %u 1 2u
g g = — e 23)
where d(x, ¥) denotes the two-dimensional delta function and v 1s
the wave front velocity. The function f(f) determines the strength
of the line source as a function of time; it is assumed that f(#) = 0
when ¢ << 0. Further, it is assumed that the medium is at rest prior
to the instant {= 0 and that everywhere outside the source
u = u(x, v, t) is continuous and has continuous partial derivatives
of the first and second order.
Following Cagniard, all functions of time are subjected to a
one-sided Laplace transform with respect to time. Let

Fls) — Ofwexp(— o) 1(0) dt (2.4)
and |
Ulx, v; ) =Ofexp(— st) u(x, v, t) dt, | - (2.5)

where s is a real, positive, number large enough to ensure the
convergence of the integrals (2.4) and (2.5) (it is assumed that the
behaviour of f(£) and w(x, y, £) as ¢ — oo is such that such a number
s can be found). Since # and du/df are continuous, U(x, y; s) satisties
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the differential equation

U 2U s2 |
ox2 oyz o2 U= —dxy) Fs). : (2.-6)

In order to solve (2.6) we introduce the Fourier transtorm of
- Ul(x, y; s) with respect to x. Let '

U(ee;y;s) = [exp(isax) Ulx, v; s) dx, (2.7)
where the factor s in the argument of the exponential function
has been included for convenience. With (2.7) the following equation

for #(e; v; s) is obtained

d2qy/
3z s%ﬂ?/‘: — o(y) F(s), (2.8)
where
y=yle) = (2 + 12 (Rey = 0). (2.9)

As indicated in (2.9), y is defined as that branch of the square root
at the right-hand -side of (2.9). for which Rey = 0. The solution
of (2.8) that is bounded as |y| — co is given by

s e z(s)

exp(— sy [y} (2.10)

With the aid of Fourier’s inversion theorem we then obtain for
U(x, v; s) the expression

GO

F \ -
Ulz,.y;s) = (5 fexp(— 1sax — sy |v|) — de. (2.11)
, 2 _ 2y - :
In the right-hand side of (2.11) we write o« = —1p and consider p
as a complex variable in the p-plane. This leads to
Fs) I | .
Ule,y3s) ==+ | expl— st + v ) dp,  (2.12)
mioJ T 2y
in which ,
y = (/0> — p?)} (Rey = 0). (2.13)

The only singl{laritie;fs of the integrand in (2.12) are branch points
at p = 1jv and p = —1/v. In view of subsequent deformations




352 A. T. DE HOOP

of the path of integration we take Rey = 0 everywhere in the
p-plane. This implies that branch cuts are introduced along
Imp=0, Ijv < |Rep| < oo

The next step towards the solution of the transient problem is to

‘perform the integration in the p-plane along such a path that the

right-hand side of (2.12) can be recognized as the Laplace transform
of a certain function of time. The analysis which follows will show
that the path has to be selected such that

px Ayl =7, (2.14)

where 7 is real and positive. If 7/v << 7 <C oo, eq. (2.14) represents
the branch I' of a hyperbola, where I'is given through

=g i (=) (p<7<oo0), (215)

in which the square root is taken positive. It is easily verified that,
by virtue of Cauchy’s theorem and Jordan’s lemma 11), the in-
tegral along the imaginary p-axis is equal to the integral along I
Along I' we have

y = bl r T4 2 (12 — 72/02)} (2.16)
72 #2
and
op iy '
— _ o %2_).%__ (2.17)

In (2.15), (2.16) and (2.17) the upper and lower signs belong
together. Taking into account the symmetry of the path of inte-
gration with respect to the real axis and introducing + as variable
of integration we obtain

[o.=]

UF(#,98) = %i)—fexp(— s7)(r2 — r2[v2)~t dr. (2.18)

rlv

This expression is of the general form

UW%Q_F@Fmemm%ﬂ& " (2.19)




METHOD FOR SOLVING SEISMIC PULSE PROBLEMS 353

where, in our case, .
0 0 <7< rfv),
glx, y,7) = - (2.20)
' 1 : '
C 2n
Application of the shift rule for Laplace transforms to the function
F(s) exp(— s7) directly yields the function u(x, v, £). We obtain

(72 — 72y2)—} (r/v < 7 < o).

u(x, v, t) =0ff(¢—7) glx,y,7)dr (>0,  (221)

while, from our assumptions, u(x, y, ) = 0 when ¢ < 0. In our case
we have : 5
0 (0 <t < 7fv),
t
1 .
o ff(t — ) (2 — 22t dr  (r/v < < o0).
7 .
. orlv

From the final result (2.22) it is clear that g(x, v, ) can be regarded
as the wave function corresponding to a delta function time de-
pendence of the source. |

§ 3. The scalar wave generaled by an impulsive point source. The
three-dimensional wave function # = u(x, v, 2, ¢) due to the presence
of a point source acting at x = 0, y = 0, z = 0 satisfies the three-
dimensional wave equation

%u 02 %u 1 0%u

Py + o7 + P —o(x, y, 2) [(2), (3.1)

where d(x, v, z) denotes the three-dimensional delta function. Again,
we assume that, outside the source, # is continuous and has contin-
uous partial derivatives of the first and second order. Further,
f(£) = O when ¢ << O and » = O when ¢ << 0. The following one-sided
Laplace transforms with respect to.time are introduced

F(s) :Ofozexp(— st) f(t) d¢ (3.2)
and - '
. U(x‘, Y, Z;S) :f‘éxp(— st) u(x, v, z, t) dt. (3.3)

0
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Since # and ¢u/dt are continuous, Ulx, v, z; 5) satisfies the differen-
tial equation

92U 2U 02U 2 ‘ |
o -+ o2 + rw plaeralh 6(x, v, 2) F(s). (3.4)

In order to solve (3.4) we introduce the two-dimensional Fourier
transform of Ul(x, vy, z; s) with respect to x and y. Let

U, B; 2; 5) = [dy [exp[is(ex + By)] Ulx, y, z; s) dx. (3.5)
Then %(«, f; z; s) satisfies the differential equation
| d2ay -
T s229Y = — §(z) F(s), (3.6)
where K
y =yl ) = (a4 2+ 1/v2)* (Rey =0). (3.7)

The solution of (3.7) that is bounded as |z| — oo is given by

, F '
e 3 259) = - expl— sy ) 3.8)

With the aid of Fourier’s inversion theorem we obtain the
following expression for Ulx, y, z; s):

S.

il oy @3 8) = "

—c0 —o0

F(Z) j dp f eXP[—iS(ocx%Lﬁy)—sy El —zlaj—doc. (3.9)

Again, we shall try to cast the integral on the right-hand side of
(3.9) in such a form that u(x, v, z, #) can be found more or less
- by inspection. It will be advantageous to transform the exponential
function into a form which resembles the one occurring in the two-
dimensional problem. This is accomplished by introducing new
variables of integration w and g through

& = @ COS @ — ¢ Sin @, ﬁ::cbsincp%—gcoscp. (3.10)
Since da df = do dg, we obtain

_U(x, 9, &3 8y = 34:1(‘;) fdgfexp:[T 1Sr — sy |2]] Z_y dw, (3.11)

—0ca —0e0
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in which, as «? + 2 = w? + ¢2,

y = (w? + ¢% + 1/v%)% (Rey = 0). (3.12)

In order to bring the r“ight-hand'side of (3.11) in a form which is
analogous to the two-dimensional case, we introduce the variable

P =10 and regard p as a complex variable in the p-plane, while ¢

is kept real. The result is

co

» |
Uls, 5,55 =~ o0 [ g f expl— stpr + pll] 5 i, 313

in which |
y = (@ + 1f2— $%)} (Rey = 0). (3.1)

From now on, the procedure is similar to the one outlined in § 2.

By virtue of Cauchy’s theorem and Jordan’s lemma the integra-
tion along the imaginary p-axis can be replaced by an integration
along the branch I" of a hyperbola, where I is given through

s iil—J[Tz R2 (g2 + 1o

R?
(R(g% + 1/v2)} < 7 < o0). (3.15)
Along I" we have
4] 4
Y= :F@EE[TZ R2(g2 + 1/v3)]* o (3.16)
and
» i - (3.17)

or + [72 — R2 (¢% + 1/v2) ]

In (3.15), (3.16) and (3.17) the upper and lower signs belong to- -

gether. Taking into account the symmetry of the path of integration
with respect to the real axis and introducing = as variable of in-
tegration we obtain

Uy, 2 5=

oo

— %;Lqufexp(— s7) [72 '_ R2 (g2 + 1/7)_2)]—% dr. (3.18)

—oo  R(g? + 1jvi)t
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Now we interchange the order of integration, which leads to

Ux, vy, 2;8) =

oo C(r2/R? — 1fvR)t
— ﬁSF(S) f exp(— s7) dr ( [+2 — R2(q2 + 1/v?)]~*d
4n? i g q
Rfv ~A R TP )
F
= %gfexp(ﬂ st) dr,
Rlv
— sR '
- Ulx,y,2;8) = F(s) 2p(— sRj2) (3:19)
4R
Application of the shift rule yields the well-known result
[t — Rfv) '
s Vo :t =T 3.20
u(x, y, 2, 1) R (3-20)

§ 4. Conclusion. The procedure outlined in the present paper
provides a method by means of which several mixed initial-boundary
value problems can be solved. For fwo-dimensional problems also
other methods are available, in particular the “method of conical
flow””.This method has been applied by Maue 12) and, more recently,
by Miles 13) to several two-dimensional problems in elastodynamics.
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