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Summary

‘When a time-harmonic plane electromagneétic wave is incident upon a
scattering obstacle of finite dimensions, the far-zone scattered field satisfies
a reciprocity relation. This reciprocity relation is derived with the aid of
H. A. Lorentz’s theorem. The result is valid under rather general assump-
tions as far as the electromagnetic properties of the obstacle are concerned.
As a special case, the result for a perfectly conducting obstacle is obtained.

§ 1. Introduction. In several branches of electromagnetic theory
some kind of reciprocity theorem holds. Restricting ourselves to
those branches where the field concept plays an essential role, we
mention the relations between the transmitting and receiving
properties of antennas 1)2) and the symmetry of the impedance (or
admittance) matrix characterizing the properties of a waveguide
junction 3)4). The cited literature shows that the proof of the
reciprocity relations under consideration is based upon a theorem
due to H. A. Lorentz5). ‘

When the scattering of a plane electromagnetic wave by an
obstacle of finite dimensions is considered, it can be shown that a
reciprocity relation exists for the far-zone scattered field. The
special case of perfectly conducting obstacles has been investigated
by Levine and Schwinger 8) (scattering by a plane obstacle of
vanishing thickness) and by Storer and Sevick ?) (scattering by
an obstacle of arbitrary shape). The proof given by these authors is
based upon the integral equation to be satisfied by the surface-
current density at the boundary of the obstacle.

In the present paper it is shown that the relevant reciprocity
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relation holds in case the obstacle has rather general electromagnetic
properties (for the precise conditions, see § 3) and is surrounded
by a homogeneous, isotropic, non-conducting medium. The proof is
based upon Lorentz’s theorem.

Reciprocity relations in electromagnetic scattering problems
have also been studied by Saxon 8). In studying Saxon’s paper,
the present author encountered some difficulties in understanding
the physical meaning of his separationof the field at infinity into
incident and outgoing spherical waves. In any case, the proof in the
present paper is mathematically rigorous and the theorem applies
to an idealization (plane-wave excitation) of a physically realizable
situation. Our results agree with Saxon’s reciprocity relation for
plane-wave scattering.

§ 2. The field outside the obstacle. A time-harmonic, elliptically
polarized, plane electromagnetic wave is incident upon an obstacle
of finite dimensions. The boundary of the obstacle is a sﬁfﬁciently
regular closed surface S. The electric and magnetic properties of the
obstacle are assumed to be linear; they will be specified in § 3.
The medium in the domain outside S is assumed to be homogeneous,
isotropic and non-conducting (which includes the case of free space),
with permittivity ¢y and permeability uo. In the exterior domain,
the electric field vector E and the magnetic field vector H are written
as the sum of the incident field E?, H? and the scattered field Es, Hs:

E = E' + Es, | (2.0

H = H' 4 H5, / (2.2)

Both the incident and the scattered field satisfy Maxwell’s
equations .

-~ curl H = — ‘wgF, - (2.3)

curl E = towpoH, (2.4)

where  is the angular frequency of the exponential time dependence

of the form exp(— iwf). This factor, which is common to all field

components, has been omitted throughout. In addition, the scattered
field shall satisfy the radiation condition 9)*)

J B — (uofeo)t (HE X ig)[2dS = o(1) (R —>oq), (2.5)

Sr

*) For a vector A whose components are complex numbers, we have (A2 = A4 4%,
where 4* denotes the complex conjugate to A.
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where Sg is the surface of a sphere of radius R around some point
of observation and igr is the unit vector in the direction of the
outward normal to Sg. o _
Let r = (%, v, 2) be the radius vector from a fixed origin to the
point of observation. The origin is located at some finite distance
from the obstacle. Further, the unit vector @ in the direction of
observation is introduced. Then, r = #0. If, now, the scattered
field satisfies (2.3), (2.4) and (2.5), the following expansion holds10):

Be(r) = F(6)

1hy

L 00 o), . (26)
ke

1Ry

(nofeo)* H(r) = [0 X F(0)] + 02y (v - o0), (2.7)

where the (complex) factor F (9) is given by |
4nF(0) = — k20 X [[n X E3(0)] exp(— ik6-9) dS +
5 .
+ (uofea) 20 x {6 x [[n x He(g)] exp(—ik0-0) dS), (2.8
5 ‘

in which g = (&, 5, {) is the radius vector to the point of integration,

and
k = w(eouo)t = 2m[2, . (2.9)

A being the wavelength in the medium outside the obstacle. The
first term of the right-hand side of (2.6) and (2.7) is called the “far-
zone approximation”. Although S in (2.8) could be any sufficiently
regular bounded -closed surface completely surrounding the ob-
stacle, it will be convenient to take S to be the boundary of the
obstacle. - - ‘

§ 3. The field inside the obstacle. The total field inside the obstacle,
too, will be denoted by E, H. The electromagnetic properties of the
obstacle are characterized by its tensor permittivity e, its tensor
conductivity oy; and its tensor permeability ugy (4,7 = 1, 2, 3). The
field vectors E = (E1, Ee, E3) and H = (Hi, Ha, H3) satisty
Maxwell’s equations, which, in subscript notation; are .

(curl H); = X (047 — twey)E; (1= 1,2,3), (3.1)
=1 . o

3
(curl E); = i X uyH; (0 =1,2,3). (3.2)
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It is assumed that &;, oy and pgy are symmetric tensors, i.e. g =
= &, Oy = O, Mij = Mgi. Further, we impose the restriction that
ey, 0y and ug are independent of the electric and magnetic field
vector (thus excluding  non-linear.. effects)~and are continuous
functions of position with the possible exception of a finite number
of sufficiently regular bounded surfaces across which they may
jump by finite amounts. If these conditions are satisfied, Lorentz’s
theorem holds1l).

Let E,, H, and Ep, Hp denote two vector fields which satisfy
Maxwell’s equations (3.1) and (3.2) in a certain domain, bounded
by a sufficiently regular closed surface S. If n is the unit vector in
the direction of the outward normal to S, we have

[ (Eq X Hy — Ey X Hg)ondS = 0. (3.3)
S

Equation (3.3) is called Lorentz’s theorem. The proof is easily
obtained by making use of Maxwell’s equations and Green’s
divergence theorem. Although S in (3.3) could be any sufficiently
regular bounded closed surface, it will be convenient to take S to
be the boundary of the obstacle.

§ 4. Proof of the reciprocity theorem. The vector fields E4, Hq and
Ey, Hp are chosen as follows. The field E,, H, is the total field due
to an incident plane wave of the form

Eqt(r) = A exp(— ika 7), (4.1)

Hi(r) = (eo/uo)t (A X @) exp(— tka-r), (4.2)

where A specifies the polarization of the wave (in general, elliptic)
and « is the unit vector pointing fowards the source at infinity.

Similarly Ep, Hp is the total field due to an incident plane wave of
the form

Eyi(r) = B exp(—tkf 1), (4.3)
Hyi(r) = (eo/uo)*(B X J8) exp(—ikf-1). (4.4)
Since the waves are transverse, we have A-¢ = 0 and B-3 = 0.

From Lorentz’s theorem (3.3) it follows that

f (Ea X Hb - Eb X Ha)"n dS = O, (45)
S

where S is the boundary of the obstacle. Since n X E,p and
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n X H,p are continuous across S, we need not indicate whether
S is approached from the inside or the outside, respectively, when
evaluating the integrand of (4.5).
In the first place we observe that

J(Ee® x Hy — Ept X Hyf)-ndS = 0(r1) (r »00),  (4.6)

S
where S, is a sphere of radius # around the origin. This relation is
proved by substituting (2.6) and (2.7) in the left-hand side of (4.6).
Since Lorentz’s theorem also applies to the domain bounded
internally by S and externally by S, (4.6) implies that

[ (Ea® X Hp® — Ep® X Hp¥) ndS = 0. (4.7)

5
Secondly, it can be shown that

[ (Edf X Hyf — Epf X Hgi)-ndS =0, (4.8)
S

Consequently, we obtain from (4.5), (4.7) and (4.8)
f(Eas X Hbi - Ebi X Ha,s)'n dS ==

S
— [ (Ev* X Hi — Egi X Hys)-ndS. (4.9
S

Now, we have from (2.8), using (4.3) and (4.4),

4xB - Fo(B)=— (uo/e0)tk? [(Eqs X Hyt — EptxX Hg8)-ndS. (4.10)
5
Application of the identity (4.9) to the right-hand side of (4.10)
yields the result

B-Fu(B) = A -Fy(a). (4.11)

Equation (4.11) is the reciprocity theorem to be proved.
The proof given above also applies to the case of a perfectly
conducting obstacle. For, in this case each term of the left-hand

side of (4.5) vanishes by virtue of the boundary condition:
nx E4p=0onS.
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