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1.  Introduction

In the present paper we deal with the diffraction of a time-harmonic

electromagnetic wave by an aperture in a perfectly conducting plane
screen of vanishing thickness. The aperture (which may consist of several
disjoint parts) is restricted to be cylindrical in the y-direction, ie., its
boundaries are parallel to the y-axis of a rectangular coordinate system.
If, moreover, only the y-component of either the electric or the magnetic
field of the incident wave is different from zero, the total field is inde-
pendent of y. In the first case (parallel polarization) the non-zero field
components can be derived from E,, the y-component of the electric
‘field, and in the second case (perpendicular polarization) the non-zero
field components can be derived from H,, the y-component of the magnetic
field. Hence, the solution of the diffraction problem is reduced to the
determination of two quantities, viz. £, and H,, that satisfy: the two-
dimensional wave equation, the appropriate boundary conditions at the
screen, the edge condition and suitable conditions at infinity.

Tt will be shown that in the case of plane-wave excitation the complex
amplitude of the far-zone diffracted field can be written in a stationary
form which is of the well-known Levine-and-Schwinger type [1]. Finally,
the variational formulation is applied to the diffraction of a plane wave
1, ¥ an infinite slit of finite width. The aperture distributior, the complex
o aplitude of the far-zone diffracted field and the transmission coefficient
g e determined up to and including the terms of relative order (kb)*

k=wave number, 2b=width of the slit). For normal incidence our
(esults agree with those of BouwramP [2] and MUTLER and WESTPFAHL [3].
r

2. Integral equation and associated variational principle

We consider the diffraction of an electromagnetic wave by a cylindrical
aperture 4 in a perfectly conducting plane screen 2 of vanishing thickness,
which coincides with the plane z=0; the boundaries of 4 are parallel to
the y-axis. The surrounding medium is assumed to be homogeneous and
isotropic with inductive capacities ¢ and . The harmonic time-dependence
of the form exp.(—iwt) is omitted throughout.
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In the first place we deal with the case of parallel polarization. The
incident wave, coming from z<0, is then given by

(2.01) Ei= (0, !, 0), ik(u/e)Hi=(—dul/oz, 0, dui/dz),

in which k=w(en)?, with the corresponding total field

(2.02) E=(0,u;, 0), ak(u/e) H=(—2u,/oz, 0, du,/dx).

The wave function u, can be written in the following form [4]:

(2.03) Sul(x, z)=ul(x, z) —ui(x, —2)+@,(x, —2), when z < 0,
. ( wy(2, 2)=@(2, 2), when z = 0.

In (2.03) the function ¢,(%, ), defined for z = 0, has to satisfy: the two-
dimensional wave equation
(2.04) %, [0 + 22, /322 + k2, = 0,

the boundary condition ¢,(z, 0)=0 on 2, Sommerfeld’s radiation con-
dition at infinity and the edge condition g,(z, 2) =0(D?) in the neighbour-
hood of a sharp edge, where D denotes the distance from the edge. In
virtue of the variational principle to be stated later on, we choose for ¢,
a representation which expresses ¢, in the value of «,(z, 0) in the aperture,
viz.

(2.05) o, 2) = —4i(2/02) [ (@) H [k{(x—a')?+22} ]d,
A4

where (z')=u,(z’, 0) and H{" denotes the Hankel function of the first
kind and order zero. The continuity of du,/dz in the aperture requires

(2.06) [ouffocd,og = — bi lim (0%o2?) | pla) HY [k{(w—a')?+22)] de,
> A

if xe 4. This leads, with (2.04), to the following differential-integral
equation

(2.07) uifd2],_0 =2(k2+ 22222) [ p(z') Kz, x")da’,

if & e A, where ’ _

(2.08) Gz, 2')=(i/4)H (k|x —a')).

Using the condition ¢(x')=0 on the rim of the aperture, integration by
parts of the second term in the right-hand side of (2.07) gives the equivalent
form

(2.09) [uifoz],_o=2k2 [ p(x) G(x, ) dz’ + 23 ox) [ (dpox’) G(x, x') dx’,
A 4

if xe A. For plane-wave excitation,

(2.10) ul(x, z)=exp [ik(z sin 6,+ z cos 6,)],

the left-hand sides of (2.07) and (2.09) read

(2.11) [u}[32],-0 =1k cos 6, exp (tkx sin 6,).
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" To obtain the far-zone diffracted field, let (R, 6) be the polar coordinates
of the point of observation at a large distance from the aperture. Inserting
in (2.05) the asymptotic expansion of the Hankel function, we have

(2.12) @y(2, 2) ~ A0, 6p)(87kR)™* exp (1kR+in/4),

with

(2.13) A4(0, 6,)= — 2ik cos 0 [ p(0y; ') exp (—tkx’ sin O)dx’,
4

in which ¢@(f,; #') denotes the aperture distribution due to an incident
plane wave travelling in the direction 6, Multiplying through in (2.07)
or (2.09) with ¢(f;z), using (2.11) and integrating over the aperture,
we obtain

1k cos 0, [ @(0; x) exp (tkx sin Oy)dx=
4

2.14 |
219 =2AJ" dwif [k2g(By; «")p(0; ) — {3¢(0g; @) 3"} {30p(0; ) [0} 1 G (w, "),

where in the second integral of the right-hand side we have used the
condition p=0 at the edge of the aperture. Owing to the symmetry in
rand 6, of the right-hand side of (2.14) we find, with (2.13), the reciprocity
felation

(2.15) Ay(740g, 0)=Ay(7c+0, 6,),
which also follows directly from a theorem due to H. A. Lorentz.
Dividing (2.14) by Ay(z-+0y, 0)A;(+0, 0y) and inverting, we find

A (m+0y,0) = Ay(m-+0,0p) =

k2 cos 0 cos 0, [ ¢(0; @) exp (tkx sin 6,) d [ 9(6y; @) exp (¢ka’ sin 0) da’
(2.16) Py A

T T T dn [ [g(0; @) 90y ') — (05 @) o} RD(fly; 2)0w' ] G, @) dar
A A

Tt can be shown that the right-hand side of (2.16) is stationary with
respect to independent variations of ¢(0;z) and ¢(6y; ") about their
correct values following from the differential-integral equation (2.07)
(or its equivalent (2.09)); only those variations which satisfy the condition
=0 at the edge of the aperture are admissible. For the analogous expres-
sion in three-dimensional scalar diffraction theory, see Bouvwgame [5].

In the second place we consider the case of perpendicular polarization.
The incident wave is then given by

(2.17) (ufe)H!= (0, ui, 0), kE'=(duifoz, 0, —duj/ox),
with the corresponding total field
(2.18) (u/e) H=(0, uy, 0), kE=duy/dz, 0, — dup/dx).

The wave function u, can be written in the following form [4]:

(2.19) [ %2, 2)=uk(z, 2) +ui(®, —2)—@y(x, —2), when 2<0,

| uy(2, 2) = go(, 2), when 2> 0.
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In (2.19) the function g,(x, z), defined for >0, has to satisfy: the two-
dimensional wave equation

(2.20) 02, 2%+ 2y [ 022 + kP, =0,

the boundary condition dg,/3z=0 on X, Sommerfeld’s radiation condition
at infinity and the edge condition ¢@u(x, 2)=0(D~*) in the neighbourhood
of a sharp edge, if D denotes the distance from the edge. In virtue of the
variational principle for the polarization under consideration, we choose
for @, a representation which expresses @, in the value of du,/dz in the

aperture, viz.

(2.21) @o(®, 2) = — % f (@ ) HP [k{(z—x')2+ 22} 1da’,

where p(z')= [buz(x , 2')[32'],,_,. The continuity of u, in the aperture leads
to the following (pure) integral equation

(2.22) gz, 0)=—2 f p(')G(x, 2" )dz',

if x € A, in which G(z, z') is given by (2.08). For plane-wave excitation,
(2.23) ui(x, z) =exp [tk(x sin 0,+2 cos 0y)],

the left-hand side of (2.22) reads

(2.24) ui(z, 0)=exp (tkx sin 0,).

Inserting in (2.21) the asymptotic expansion of the Hankel function,
we obtain for the far-zone diffracted field

(2.25) @o(, 2) ~ A,(0, 0,)(87wkR)~* exp (1kR +im[4),
with
(2.26) A0, 6,) *—ZJwGO,w)eXp(—zkfc sin 0)da’,

where y(6,; ') denotes the aperture distribution due to an incident plane
wave travelling in the direction 6, Multiplying through in (2.22) with
w(0; x), using (2.24) and integrating over the aperture, we obtain

(2.27) [ w(0; x) exp Gk sin Op)de = —2 [ dx [ p(0; x) G(z, ') p(0,; 2" )dx’.
4 A 4

In this case, too, we have the reciprocity relation
(2.28) Ay(mu+6,, 0)= Ayt 0, 0,).
Dividing (2.27) by Ay(n+ 04, 6)45(n+0, 6y) and inverting, we find

A+, 0) = Ay(m+-0, 6y) =

| 9(0; @) exp (tha sin 0,)de [ (6,; «') exp (ika' sin 0) du
(2.29) i a1

[ de [ p(0; x) Gz, ') p(0y; #') dee’
4 A4

It can be shown that the right-hand side of (2.29) is stationary with
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respect to independent variations of y(0;x) and v(f,; ') about their
correct values following from the integral equation (2.22); in this case
the variations are not restricted by a condition at the edge of the aperture.
For the analogous expression in three-dimensional scalar diffraction
theory, see Bovwkamp [6].

3. The transmission cross-section

The transmission cross-section is defined as the ratio of the average
power transmitted through the aperture to the average incident power
per unit area normal to the direction of propagation of the incident
wave. The average transmitted power for parallel polarization is given by

(3.01) ‘ P, =1 Re(ijwu) [ u[du][32'], o d’,
4
where the asterisk denotes the complex conjugate quantity. However,
from (2.03), we have
(3.02) %[22 Ty —o = [2UL /02" ],y =1k cOs O, exp (1kz’ sin B;),

if «’ € A. Hence, eq. (3.01) can be rewritten as

(3.03) P, = — (4oop)™ Im A;(0y, 6,)-
In the case of perpendicular polarization the average transmitted power is
(3.04) P,=1 Re(i|wu) [ u; [Duy[z ], oo d’.

4

In this case, from (2.19), we have

(3.05) ug(x’, 0)=wui(a’, 0)=exp (ika’ sin 0),

if '€ A. Hence, eq. (3.04) can be rewritten as

(3.06) Py= — (dop)™r Im Ay(6,, 0).

For both polarizations the average incident power per unit area normal
to the direction of propagation of the incident plane wave is

(3.07) Pi=4(efp)’.

From (3.03), (3.06) and (3.07) the transmission cross-section turns out to be
1
(3.08) o1,9(00) = — 53 Im A, (04, 0o).

A stationary expression for ¢, , can be obtained by using the stationary
expression for A, ,(0,, 0,) which follows from either (2.16) or (2.29). The
relation (3.08) is analogous to the one in three-dimensional scalar dif-
fraction theory; see LEVINE and ScHWINGER [7] and Bouwrawmp [8].

4. Diffraction by a slit. Polarization parallel to the edge of the slit

The variational formulation will now be applied to the diffraction of
a plane wave by an infinite slit located at =0, —b<wx<b. For parallel
polarization, the relevant aperture distribution ¢(x)= w,(z, 0) will
be expanded in terms of the eigenfunctions of Laplace’s equation
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in the coordinates of the elliptic cylinder, viz. cos [n arcsin (z/b)] and
sin [n arcsin (z/b)]. This expansion is adapted to diffraction by narrow
slits, as Laplace’s equation is the limiting form of the wave equation for
kb — 0. In view of the boundary condition at the screen there results

(4.01) @(0p; @) = § {02441 cOS [(2n +1) arcsin (x/b)] +

+ 10y, sin [27n arcsin (w/b)]};

where the coefficients a, are independent of = and the factor ¢ in the
second summation is added for convenience. It may be remarked that
each term of the expansion (4.01) satisfies the edge condition. As the
variational formulation will only be used to obtain the exact solution,
it will be sufficient to require the expression for, e.g., 4,(6,, 6,) to be
stationary. From (2.16) it is clear that for this special choice the aperture
distributions @(0y; #) and @(z-+0,; ) are needed; however, in virtue of
the symmetry of the configuration, we have: @(m+0y; 2)=@(lh; —).
The stationary expression for 4,(6, 0,) now reads

Al(eo’ 9(}):
b b :
(4.02) k# cost Oy [ (fo; ) exp (— ke sin ) i | l0y;—') exp ik sin 0, d’
=75 b )
| dw [ [k2(0y; @) @6 —&') — 2 (6y; )0} (63 —') /o' }] GH(w, =)’
-5 —b

Using the expansion (4.01) and a well-known integral representation of
the Bessel function of the first kind, we obtain

b .00
(4.03) | @(By; %) exp (— ik sin 0,) dx = (z/k sin 6,) 3 na, J,(kb sin 8,).
-b n=1
In a similar way the denominator of (4.02) is reduced to

b
fb da | [k*p(0y; %) p(0y;—2") — {d9(0,; %) oz} {op(0y; — ') [oa'}] Gz, ') d’ =

(4.04) { 7 7V o o
S — — (w4) [ AR S ma, J,(Ab)]2 dA,

where we have used the integral representation
(4.05) H{(E|o—a'|) = (@)~ [ (A2—k*) "% exp [—iA(z—2')] dA.

The square roots in (4.04) and (4.05) are defined as (A2—k2)¥>01if |A >k
and (A2—k2) = —q(k2—2%)}, with (K2—A%)'>0, if |[A|<k, (Areal). If we
substitute

(4.06) Cp =100,
and

(4.07) dy o=y = — 3 [ ATHA2— K2 J,,(2b) T ,(2) dA,
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eq. (4.02) can be rewritten as

7 cot? O, [ Z cn oJ (kb sin 6;) 12

(4.08) A (0, 6,) =
% 2: z:dmmcmcn

m=1n=1

Let us now apply independent first-order variations dc, to the correct
values of ¢,. In view of the stationary character of (4.08), the condition
04,=0 leads to the following set of linear equations in ¢,:

(4.09) A4, Go,Bo)zdmnc = 27 cot? 0y J (kb sin 6,) Z(}J (kb'sin ),
" N m=1,2,3,..).

On the other hand, from the non-stationary expression (2.13), we have

(4.10) A0, 0¢) = — 2mi cot O > ¢, J,(kb sin 6).
n=1
Combining (4.09) and (4.10), we obtain
(4.11) % Qo € =t cOL Og J (Kb sin 6), (m=1,2,3,...).

Now, from (4.0 ) it is clear that d,, ,= 0 if m+n is odd; hence the system
of equations (4.11) breaks down into two independent systems of equations,
viz.

3

(412) 3 dopig,0041 Conir = ¢ €06 Og Jo, 44 (kb sin ), (m=0,1,2,..),

(4.13) d2m,2n Czn: ’l:OOt 00 sz(kb Sin 60), (mzl, 2, 3, ..n).

1

YL

These systems of equations show properties which are very similar to
those of the analogous system of equations encountered in the variational
formulation of the scalar diffraction by a circular aperture [9]. Using
the power-series expansion of the Bessel function of the first kind and
expanding [10] d,, , in series of powers of kb the coefficients of which
contain log kb, we arrive at the following results:

a, = ¢, = — ikb cos 0, [1—1(p—§+%sin2 6) (b)* +
1 1

+ﬁ<p 410-1— ps1n20 + gsinzﬁo—}—

+ 112 sin4 00> (kb)* + . ]

(4.14) .

¢3 = — 73 4(kb)® cos b, [1 + 2 8in2 0, +

I
[SUI]

as

1 15 1. .
~3 (3p—-8—+ = sin? 6, -+ sind 90) (kb + ...],

1
5 =73 C; = ﬁz_o (kD)5 cos 0, [1 = sin? 6, +—sm4 Oy + .. :,
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and ,
s ay = 3 0y = — 7 i(kb)? cos 0 sin 0, [1_#-{15(1—5111290) (kD)2 + ... ],
4.15 |

g — 5 6 = — gag i(kB)* €O B sin 6y [1 + 2 sin® By + ...,

in which p=1log (ykb/4)—ni/2 and log y=0.577215... (Euler’s constant).
All other coefficients a, contain only powers of kb higher than the fifth.
To the same order of accuracy the complex amplitude of the far-zone
diffracted field is given by

. Al(ea 00) =
v 1 3 . . .
—7t(kb)? cos 6, cos 0 [1‘— 3 {2p — 5 + sin® o — sin 0, sin 0 +

. 1 5 1 . 7
+s1n26}(kb)2+fg{ 2~Zp+—2-psm200+1—6-+
(4.16)

— 2 sin® 6y + 1 sind 0 + 5 (1 — sin? 6;) sin 0 sin 6 +
1

2 2 . . 1 . .
+2<p—§+§sm260>smz@—681n9081n30+

I .4 4
+ 15 sin 0} (kb)* + ]
The corresponding transmission coefficient z;, which is defined as the
ratio of the average power transmitted through the aperture to the
average power transmitted through the aperture in the sense of geometrical
optics, can be determined from

1 /2
[ 1 44(6, 6o) [* dO.

4.1 S —
(4.17) 1= 16 kb cos 0o 72

As a check on the calculations the relation

(4.18) Ty = — Im A4,(0,, 0,),

4 kb cos 6,
which follows from (3.08), may be used. The result is found to be

7'52(706)3 cos 0, [1 {__ log (ykb/4) + g — % sin? 60} (kb)? +

1=
(4.19) + 25 {3 log? (ykb/4) — & log (ykb[4) + 2 sin? 6, log (ykb/4) +

109 = 17 5
A T g sim® 0 7 sint O J () + ]

For normal incidence, 0,=0, our results (4.14), (4.15), (4.16) and (4.19)
agree with those of Bouwkamp [2] and MULLER and WESTPFAHL [3].

5. Diffraction by a slit. Polarization perpendicular to the edge of the shit

For perpendicular polarization the expansion of the relevant aperture
distribution w(x), which follows from separation of variables in Laplace’s
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equation in the coordinates of the elliptic cylinder and the boundary
condition at the screen, reads

< cos [ 2n arcsin (z/b)]

p(0g; ) = 2, {OZn (1—22/b%)% +

(5:00) " in [(2n 4-1) arosin («/b)]
N sin v/ arcsin (x
+ 7'Ozn—f—l (1—a2/p2)F }

In this case, too, each term of the expansion (5.01) satisfies the edge
condition. The stationary expression for A4,(6,, 6,) becomes

b b

| w(6y; 2) exp (— ik sin 0;) d [ w(8,; —=') exp (skz’ sin 6,) da’
(5.02) Ay(b, 6) = = — = ;
[ da [ w(b;x) Qw, z') p(6y; —2') da’
b e

where we used the relation y(m-+0y; ®)=v(0,; —«). With the expansion
(5.01) we obtain

b ‘ o
(5.03) J w(0y; ) exp (—tkx sin 0g) de = b Y O, J, (kb sin 6,).
—b n=0

In a similar way the denominator of (5.02) is reduced to

2 b b
J dz [ (0y; %) Gz, x) p(0y; —2') da’ =

(5.04) b < . o
= (nb*[4) [ (B—k3)"F[ 3 CnJ (D)1 dA,

where we have used the integral representation (4.05). The square root
in the right-hand side of (5.04) is defined in the same way as in section 4.
If we make the substitution

[ee]

(505) Dm,n = Dn,m = % .f (}'2—"7‘;2)—_zt Jm(}’b) Jn(;{b) d/la

eq. (5.02) can be rewritten as

[e9)
27 [ EO Ch, J (kb sin 0,) 12

(5-06) : Az(am 60) = o:: ©
m=0 n=0

Applying independent first-order variations 6C, to the correct values of
C,, the condition d4,= 0 leads to the following system of linear equations
in C,:

o0

(5.07)  Ag(lg, 00) S DypoCo = — 2mJo(kbsin 6) S C, J (kb sin 6),
" " (m=0,1,2,..).

On the other hand, from the non-stationary expression (2.26), we have

(5.08) AyBy, 00) = — 2b S O, J, (kb sin 6).
n=0
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Combining (5.07) and (5.08), we obtain

(5.09) 3 D,.C0.,=
n=0

®‘|)—I

J (kb sin 0), (m=0,1,2,...).

From (5.05) it is clear that D, ,=0 if m+4n is odd; hence, eq. (5.09)
breaks down into two independent systems of linear equations, viz.

(5.10) S Dypon Con = 3 Jonlkbsingy),  (m=10,1,2,...),
n=0

1 .
D2m+1,2n+1 OZW:‘I‘]. = "b‘ J2m+1(kb Sin 00), (m = O, 1, 2, ...).

M3

(5.11)

n

If

0

The properties of these systems of equations are similar to those of the
corresponding systems of equations of section 4. Using the power-series
expansion of the Bessel function of the first kind and expanding [10]
D,,, in series of powers of kb the coefficients of which contain log kb,
we arrive at the following results:

11 . 1(1  1/3 .
500=5+E<1—sm260) (kb)2+6—4-{§?+—25<z—3sm260+
+ sin 00) — (1—2sin? 00>} (kb)* +

(56.12) (b0, = ( +1— 2 sin2 0 > (kb)? +- (1 — sin?6,) -+

1 {1
4 32

— g5 (1 sin® 0, — 2 sin® 0) | (kb)* +
b0, = — {l+§(1+4sin20 — 8 sint6,)) (kb)*
, 4= 512 p " 3 0 n o)}( )+
and :
bC, = — kb sin 0, [1 {p+ —lsmzﬁ }(kb)2+...],
(5.13)

b0y = 35 (kB)® sin O [1— 2 sin? 0y + ...],

- in which p has the same meaning as in section 4. All other coefficients
C, contain only powers of kb higher than the fourth. To the same order of
accuracy the complex amplitude of the far-zone diffracted field is given by

AZ(Q: 00) =

e om0 —sin?) — Lsin 6, sinf — = sin? 2.
= 2n[p+{4p(1 sin? 6,) 2s1n00s1n0 1 S0 6}(kb)
1 1 /3 = -

+ {_—_128fp2 + i (Z — 3 sin? 0, + sin 60) +

5.14
(5.14) (1—9sm20)-%sin00<1}9+7i—%si11260>sin0+

T 64
1
2 3 2 1 2
< 64p 16p sin? 0, —}— — 1g sin 00> sin% 6 +

+
—[——1— sin 8, sin3 § + —— sin? 6} (kD)% + ]
6 O 642{) .o .
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The corresponding transmission coefficient 7, can be determined from

(5.15) Ty =

1

n/2
167kdb cos Oy _ IA 0, 0 |2d0

As a check on the calculations the relation

(6.16) Ty =

4kb cos 6, Im A,(6,, 0,),

which follows from (3.08), may be used. The result is found to be

2 1 1.
TZZW 1+{—-—§SIH2 00} (kb)Z
1 3
(5.17) +{256+64R +< |p|2 —ﬁ>sm26 n
+ 332 sin4 00} (kb)* + . ]

with |p|2=log?(ykb/4)+ n?/4 and Re(l/p)=Ilog (ykb/4)[log?(ykb[4)+ n2[4]71.
For normal incidence our results (5.12), (5.13), (5.14) and (5.17) agree
with those of Bovwramp [2] and MULLER and WESTPFAHL [3].
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