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Summary

If Levine and Schwinger’s variational formulation of the dif-
fraction of a plane wave by an aperture in an infinite plane screen is
applied to the case where the aperture is a circular hole, the problem of
finding the aperture distribution can be reduced to the solution of an infi-
nite system of linear equations. As pointed out by Bouwkamp the most
appropriate expansion of the aperture distribution is of the form

(o) = §obn1’2n+1 (1 —¢¥a)Y],

where a = radius of the aperture. In the present paper the system of
equations in b, is investigated.

§ 1. Introduction. By means of their variational principle L e-
vine and Schwinger?!) reduced the problem of the diffraction
of a scalar plane wave by a circular aperture in a perfectly soft
infinite plane screen to the solution of an infinite system of linear
equations for certain coefficients a, which determine the field @,(o)
in the aperture, viz.

/() = X a,(1 —la", (1.01)
n=1
where a = radius of the circular aperture.

This system of equations was thoroughly investigated by Mag-
nus?). However, as Bouwkamp?3 has pointed out, an ex-
pansion of the aperture distribution of the form

@i(0) = Eb,Pops [(1 — e} (1.02)

would have the advantage that the Legendre polynomials under con-
sideration form an orthogonal set in 0 < ¢ < a. Application of the
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variational principle now leads to a system of linear equations for
the b,, the properties of which are simpler than those of the corre-
sponding system for a,.

If the b, together with the coefficients of the system of equations

are expanded in power series in ¢ = ¢ka (k = wave number) and
only the first N equations for b,, 4, . . . ., by areretained, disregarding
all powers of ¢ higher than the (2N 4 1)th power, the coefficients of
the first 2N + 1 powers of ¢ in &, . ..., by are exact. This property

is easily proved when taking into account the nature of the power
series expansion of the matrix of the system. Finally, the coefficients
by, . ..., byare computed up to and including O(c%).

§ 2. Determination of the system of linear equations. We consider
the diffraction of a scalar plane wave by a finite aperture in a per-
fectly soft infinite plane screen of zero thickness. The screen coin-
cides with the plane z=0 and the incident wave comes from z=—o0.

Now, the amplitude A4,(n"’, n’) of the diffracted wave at large
distances behind the screen can be written in a stationary form, viz. 3)

Al(n/l, n/) —
kcos®’ cosb” [ @, (p) exp (—kn"”.p)dS [ D_,. (o) exp (tkn’. p) dS
A A

’ ’ ’ ’ ’ ’(201)
TTIF Dy @) (¢) =V ) V0 (p)] Gl ) 4SS
where
n’’ = unit vector in the direction of observation,

n’ = unit vector in the direction of the incident wave,
p = radius vector in the plane 2 = 0,
D,.(p) = field in the aperture due to an incident wave in the
direction of n’,
6" = angle between n’ and the positive z-direction,
0" = angle between n’’ and the positive z-direction,
k = w/c = wave number corresponding to time-harmonic plane
waves with velocity of propagation c,
G, p)) =-exp(ik|p—p’|)/lp —p'|, the free space Green’s function.
The integrations are extended over the aperture A.

The harmonic time dependence of the form exp (—wt) is omitted
throughout and the gradients are taken in the plane z = 0. Only
variations of @(p), which satisfy the condition @(p) = 0 at the rim
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of the aperture are admissible. As we shall use (2.01) to obtain the
exact value of @,.(p) we restrict ourselves ton’ = n"” = n.

In the case of normal incidence and a circular aperture of radius 4,
the function @, (p) = P,(¢) will depend on g only. Hence,

2/ 9(0) 4S [ B(0) dS

1/ [F2®1(e) D1(0") -V i(0).V'P1(e")] G(p, p") ASAS™

A, (nn)= (2.02)

where n is a unit vector in the positive z-direction.
If the correct aperture distribution is assumed in the form 3)

Bile) = X b,Pous [(1 — e, (2.03)

we obtain the following stationary expression for 4,(n, n):

2ab2
A= —— 0 (2.04)

> @m0 Oy
m=0 0

i M3

. where
Iim +3) I'(n + §)
Im+ 1)In+1)"

4= (6]ka)?

SO =1 072 [, (RaV) Ty, s, (kav) do. (2.05)
0
On the other hand from the non-stationary expression
A = — (z'k/Zn)Afdi,(g) ds (2.06)
we have
A, = — % tha®b, (2.07)

Application of the variational principle to (2.04) leads to the
following infinite system of linear equations in b,

=d,,b, = (6/ika) 8,5 m=0,1,2,3,...., (2.08)
n=0

where doy =1, 4,,, =0 if m > 0. Eq. (2.08) is due to Bouw-
kamp?3).
Making the substitutions
dy,p = (6/ka)* 1, (2.09)
b, = — (tka/6)x,, (2.10)
Appl. sci. Res. B 4
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we obtain from (2.08)

2l . x, =90

mnn m, 0’
n=0

Introducing the matrix

m=0,1,23,..... (2.11)

L=

m,n)
and the columns

E={x,}, n=1{1,0,0,....}

we can write the system of linear equations (2.11) in the form
LE=n. (2.12)

§ 3. A power series solution of the linear equations. The simplest
way to obtain a solution of (2.12) is to expand the elements of L and
& in a power series in

& = tka. (3.01)

As the even and odd powers of ¢ play a different role in the ex-
pansion, we shall write (following Magnus’ notation)

L — OZOL@P) EZP _|_ OZO L(2q+3) 824I+3, (302)
p=0 g=0

&= E 5(2P) Py + oZo §(2q+3) 82q+3’ (3.03)
=0 ¢=0

where
L2 — (l%’))’ L2a+3) — (liiqn+3))’ 5(213) — {xﬁf”)}, 5(2q+3) —_ {xgﬁs)}

and

(= =) o0
Ly = 3120 2 | 3009 g2+ (3.04)
p=0 g=0
0 oo
%, = X 22 g2 4 7 4203 g2+3 (3.05)
p=0 g=0

As will be shown in the appendix the coefficients of the expansion
(3.04) are given by
o _ L Tn+9) Tn + )
™ 4 I'm+1)I'(n+1)
()" I+ 3 Ip—1)
"Tem—np-3) T (m—n+p+ 1) Lemt-ntp+ 1) Tm-+n+p+-5)

(3.06)
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oy _ L LT+ 3
i 4m4+1)Tn+1)
(—)"""I(g+2) I'(g +1)
T(=m—n--q+ 1) T(m—n+q+3) I'-m+n—+q+8) IN'm—+n+q+4)
Substituting the expansions (3.02) and (3.03) in (2.12) we obtain
(E LoP @ ¥ [@a+d) gzq+3> <°2° £ 2p L 5 g0+ 82”3):1;‘0’,(3.08)

p=0 g=0 =0 q=0

l

.(3.07)

where
7% =9={1,0,0,0,....} (3.09)
Comparing the coefficients of equal powers of ¢ on both sides of
(3.08) we obtain the following sets of linear equations
L 5(0) . ,7(0)’ (3.10)
LOED 4 O gr=2 4 @ gr=3
co A LEIES L LD ED L TN ED =0,y = 2,3, 4,.. (3.11)

The matrices L?) and L*® have the peculiar structure given
below. Roughly speaking they contain “many zeros”.

0 1....p
L@ 0 X X X X 0 00O
1 X X X X X 000
DX X X X X X 00 =0 if
P X X X X X X X0 nzm4p+1
0 X X X X X X X mx=n+p+1
0 0 X X X X X X
0 00 X X X X X
0 00 0 X X X X
0O 1....... q
L@+d 0 X X X X X000
] X X XX 0 00O
DX X X 00 0 0 0 [Z¥=0 if
: X X 0 0 0 0 00 mAgn=qg+1
g X 0000O0O00O
0 0000 0O O0PO
0 000 O0OTO0OO O
0 000 O0O0O0OO
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In particular L® is a diagonal matrix with elements

o 1 I'(m + §) I'lm + 3) I'(3) I'(— 3)
™" 4l(m + 1) Dm + 1) I(— 2m — }) I'(2m + $)

.(3.12)

Because of the latter fact we can easily obtain the matrices S}
and S%*3 which are defined by
L&) — [0 5(213), (3.13)
L@+3) — 10 S(2q+3)’ (3_14)
where
SO0 — (&), SPrY = (s,
Their elements are given by
an__ T DI+
™t T3 m +3) Dn+1)
L(p+HT(p—HT(—2m—pHT(2m+3) 15
T(m-n+p-3) L (m-n+p+ 1) (~m+n+p+1)Tim+n+p+8)"
(2¢+3) _ (=" Lm+1)(n+3) )
S TIN—3) 3Lt 1)
I'(g+2) g+ 1) I'(—2m—35) I'(2m+3)
T(m—n—+gq+ 1) (m—n-+g+3) [ (~m~+n-+q+3) (m-+n-+q-+4)

The structure of S® and $@+3 js similar to that of L?) and L@+3)

[

[ S

.(3.16)

respectively.
Introducing S®) and S*%*¥ in (3.11) we can determine & if
gO g@ 20D gre known, viz.
Lo 5(0) — ,,7(0) (317)
,;.-(f) = —S@ 5(7—2) — S 5(7—3) .

e =SB B GU=2) £@_ G g0 y—2 3 4. ... (3.18)

From (3.17) it is obvious that in £ only the element with suffix 0
is different from zero; from (3.18) we see that in £® too only the
element with suffix O is different from zero. These results imply that
because of the structure of S and S®+*3 in ¢ only the elements
with suffices 0, 1, ... ., p and in £#7¥ only the elements with suf-
fices O, 1, ...., g aredifferent from zero. The proof simply follows by
induction from (3.18). Moreover the properties of &%) and &%+
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show that the first term in the power series expansion of x,, contains
the factor ™.

All this proves that an approximate solution of (2.11) is obtained
by the following procedure:

(i) Only the equations m = 0, 1, ...., N are retained.

(ii) In these equations all powers of ¢ higher than the 2N-th
power are disregarded.

(iii) The former step implies that we take xy ;= xy, , = ..
e =0,

In this approximate solution the coefficients of the first 2N powers
of ein x,, ...., xy are exact.

§ 4. Numerical results. The columns &9, . ..., &7 are determined
by means of the recurrence relation (3.18). We found

E9 — (12/2,0,0, ...},

£ = 10,0,0, ....},

£@ — {— 12/5r, —4/157, 0,0, ... .},

E®) = {—8/322,0,0, ....},

&% = (8/35x, 4/45x, 4/1575x, 0,0, ....},

£8) = (647522, 8/7527, 0,0, ....},

£0 = {— 4/31573-16/277°, — 4/4957, — 4/4095,

— 43153157, 0, 0, ....},
£7) = (— 7464/5512502, —112/337522, —8/661572, 0, O, ....}.

These results together with (2.10) give
by = & [—2/m + (2/57) 2+ (4/97%) e3— (4/1057) &* — (32/22577) &°
+ (2/9457x — 8/817°) &° 4+ (1244/5512572) 7] 4- O(&%),
b, = & [2/45n — (2/135m) 2 — (4/2257%) &* + (2/14857) &* +
4 (56/1012572) €°] + O (¢°),
b, = &5 [— 2/4725x + (2/122857) & + (4/198457%) %] + O (£°),
by = (2/945945x) &7 + O (¢°).

Our values of b, . ..., b;are in complete agreement with B ou w-
kam p’s results %).
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APPENDIX

(=~

Evaluation of [ (v* — )Y 072 [, 5 (kav) [, s, (kav) do.
0

We shall derive a power series expansion in %« of the integral
Rm,n - i‘[m,n = / (‘1)2—— ])% v—2 ]2m+3/2 (kav) ]2n+3/2 (kav) d?), (AOI)
0
where

R =

mn

8

@ — 1) 072 Jo 0, (Ra0) Jo s, (Rav) do, (A.02)

-

0f (1 =0 072 Ty oy, (kD) T3y, (Rav) dv (A.03)

The simpler of the two is I, , which is most easily evaluated if
use is made of the power series for the product of two Bessel functions
of the first kind 5):

2 () @) (v )
J&J@) = 2 : -
=0 ! w7+ 1)Iv+741)
Substituting (A.04) in (A.03) and making use of the Eulerian integral
of the first kind ¢), we obtain

1 § (—) (ka)*+2 230 t-n4-r+2) Tm+-ntr4-1) (A.05)

™4 Zo D+ 1) T 2m+7+3) T(2n+r+3) T 2m~+-2n+r+4)"
The expression for R, , is more complicated. To obtain the power

series expansion we shall follow a procedure which is analogous to

the one givenby Bouwkam p 7). Accordingto Watson$8 one
has, if —L << Re (u 4+ ») < 0,

J 2,,(kﬂv)] 2V(k¢w) =

(A.04)

I'(2s + 2u + 2v + 1) (%kav)2”+2"+zs
2m ]’s—l—Z,u—i—l T(s+2v+ ) I(s+2u—+2v+ 1)

ds, (A.06)

in whlch the path of integration coincides with the imaginary axis
except for an indentation towards the left at the origin. Trans-
forming the gamma-functions in (A.06) we get

Joulkav) ] o, (kav) =
U [T+ v+ 3) Tls + o+ » + 1) (bao) 5+ ds

2m1) I(s+1)1(s+ 2u+1) I'(s + 2v+-1) I'(s+ 2u—+2v+1) sin zs

— 00t
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and consequently

S — 1)} 072 ], (kav) T, (kav) do —
1 oo

__1_ IO Is+ut+v+HIs+putv41) (ka)¥T2+2gs
2ni ) I(s+1) I(s+2u+1) I(s+2v+1) I(s+2u~+2v+ 1) sin s

— oot =)

f (,02 . 1)% v2‘+2"+2”‘2dv.
1

However, for the range of (z 4+ ») under consideration we have

[~

[(vz—l)%vzs“"“”_z dp — I'@) I (s+p+vr—3) cos (s+pu+v)
20(s+u+v+1) sin (sd-putv)z’

1
Hence

oo

J (@ — 1072 T, (kav) [, (kav) dv =
1

U [ THIQIG + p+ v+ DI + p + v — ) (ha 2o
2me) 20(s+1) I'(s 4+ 2u +1) I'(s + 2» + 1) I'(s +2u+2v + 1) sinazs
sl hutdm, Ao
sin (s +u + v =
The poles of the integrand to the right of the path of integration
are located at s =# and s=—pu—v 47 (#=0, 1, 2, ....).
Closing the contour to the right, application of the theorem of resi-
dues yields (withu = m + $andy = »n + §)
Rm,n =
g ()" I + 3) ' — §) (ka)”
T 4,5 IP(—m—n+r—%) I'm—n-+-r4-1) I'(—m-+n-+r+-1)Im—+n-r+3) )

By analytic continuation (A.08) holds for all positive values of m
and » including zero.

(A.08)

From (A.05) and (A.08) an elegant expression for R,,, — [, ,can
be obtained if in (A.05) the terms corresponding to » = — 1, —2,
..., —m — n (which are zero) are added. The modified sum then
contains all powers of 2ka except the first power, viz.

) 1 1 1y, 1
Ry il = () oy &+ 3) I — )
! T4 o (—m—n+Yr—HI(m—n+Lr+1)
(cka)

. ,  (A.09)
IN(—m+n+3r4+1) I'm4+n+ 3 4 5)
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where the prime denotes that the term corresponding to# = 1 has to
be omitted.

The author is indebted to Professor J. P. Schouten for his
stimulating interest during the course of this work.

Received 24th May, 1954.
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