Contents

Preface ... xxi
Suggestions for classroom use xxiii
Printing of symbols xxv
General introduction xxvii

Part 1 Radiation and scattering of acoustic waves in fluids

1 Introduction 3
 Exercises 5
 References 6

2 Basic equations of the theory of acoustic waves in fluids 7
 2.1 Number density, drift velocity, volume density of mass, and mass flow density of a collection of moving particles 7
 Exercises 14
 2.2 Conservation of the number of particles and its consequences 16
 2.3 The equation of motion 20
 2.4 The deformation rate equation 24
 2.5 The constitutive relations 25
 Exercises 28
 2.6 The boundary conditions 29
 2.7 Low-velocity linearisation: the equations of linear acoustics 31
 2.8 Exchange of acoustic energy 37
 Exercises 40
 2.9 The frictional-force/bulk-viscosity acoustic loss mechanism 41
 Exercises 43
 2.10 Acoustic scalar and vector potentials in the theory of radiation from sources 44
 Exercises 46
 2.11 Point-source solutions; Green’s functions 47
 Exercises 48
 2.12 SI units of acoustic wave quantities 49
 Reference 50
Contents

3 The principle of superposition and its application to acoustic wave fields in configurations with geometrical symmetry
- 3.1 The principle of superposition .. 51
- 3.2 Symmetry with respect to a plane 52
 - Exercises .. 57
- 3.3 Symmetry with respect to a line 58
 - Exercises .. 62
- 3.4 Symmetry with respect to a point 63
 - Exercises .. 67

4 The acoustic wave equations, constitutive relations, and boundary conditions in the time Laplace-transform domain (complex frequency domain)
- 4.1 The complex frequency-domain acoustic wave equations 70
 - Exercises .. 71
- 4.2 The complex frequency-domain constitutive relations; the Kramers–Kronig causality relations for a fluid with relaxation 71
 - Exercises .. 74
- 4.3 The complex frequency-domain boundary conditions 75
 - Exercises .. 75
- 4.4 The complex frequency-domain coupled acoustic wave equations 76
- 4.5 Complex frequency-domain acoustic scalar and vector potentials 77
 - Exercises .. 79
- 4.6 Complex frequency-domain point-source solutions and Green’s functions 80
 - Exercises .. 81
 - References ... 81

5 Acoustic radiation from sources in an unbounded, homogeneous, isotropic fluid
- 5.1 The coupled acoustic wave equations and their solution in the angular wave-vector domain 83
- 5.2 The Green’s function of the scalar Helmholtz equation 86
 - Exercises .. 89
- 5.3 The complex frequency-domain source-type integral representations for the acoustic pressure and the particle velocity 89
 - Exercises .. 93
- 5.4 The time-domain source-type integral representations for the acoustic pressure and the particle velocity in a lossless fluid 93
 - Exercises .. 97
- 5.5 The Green’s function of the dissipative scalar wave equation 97
 - Exercises .. 103
- 5.6 Time-domain source-type integral representations for the acoustic pressure and the particle velocity in a fluid with frictional-force/bulk-viscosity losses 104
- 5.7 The acoustic wave field emitted by a monopole transducer 106
- 5.8 The acoustic wave field emitted by a dipole transducer 111
Contents

5.9 Far-field radiation characteristics of extended sources (complex frequency-domain analysis) 116
5.10 Far-field radiation characteristics of extended sources (time-domain analysis for a lossless fluid) 119
Exercises .. 122
5.11 The time evolution of an acoustic wave field. The initial-value problem (Cauchy problem) for a homogeneous, isotropic, lossless fluid .. 122
Exercises .. 124
References ... 125

6 Plane acoustic waves in homogeneous fluids 127

6.1 Plane waves in the complex frequency domain 127
Exercises .. 130
6.2 Plane waves in lossless fluids; the slowness surface 130
Exercises .. 132
6.3 Plane waves in the real frequency domain; attenuation vector and phase vector 133
Exercises .. 139
6.4 Time-domain uniform plane waves in an isotropic, lossless fluid ... 140
Exercises .. 142
6.5 Structure of the plane wave motion near the planar boundary of an acoustically impenetrable object 144

7 Acoustic reciprocity theorems and their applications 149

7.1 The nature of the reciprocity theorems and the scope of their consequences .. 149
Exercises .. 156
7.2 The time-domain reciprocity theorem of the time convolution type ... 157
Exercises .. 160
7.3 The time-domain reciprocity theorem of the time correlation type .. 160
Exercises .. 164
7.4 The complex frequency-domain reciprocity theorem of the time convolution type 164
Exercises .. 167
7.5 The complex frequency-domain reciprocity theorem of the time correlation type 169
Exercises .. 172
7.6 Transmission/reception reciprocity properties of a pair of acoustic transducers .. 173
Exercises .. 176
7.7 Transmission/reception reciprocity properties of a single acoustic transducer .. 177
7.8 The direct (forward) source problem; point-source solutions and Green's functions 181
Exercises .. 189
7.9 The direct (forward) scattering problem .. 193
7.10 The inverse source problem .. 199
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.11</td>
<td>The inverse scattering problem</td>
<td>205</td>
</tr>
<tr>
<td>7.12</td>
<td>Acoustic wave-field representations in a subdomain of the configuration space; equivalent surface sources; Huygens' principle and the Ewald–Oseen extinction theorem</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>220</td>
</tr>
<tr>
<td>8</td>
<td>Plane wave scattering by an object in an unbounded, homogeneous, isotropic, lossless embedding</td>
<td>221</td>
</tr>
<tr>
<td>8.1</td>
<td>The scattering configuration, the incident plane wave and the far-field scattering amplitudes</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>230</td>
</tr>
<tr>
<td>8.2</td>
<td>Far-field scattered wave amplitude reciprocity of the time convolution type</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>239</td>
</tr>
<tr>
<td>8.3</td>
<td>Far-field scattered wave amplitude reciprocity of the time correlation type</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>249</td>
</tr>
<tr>
<td>8.4</td>
<td>An energy theorem about the far-field forward scattered wave amplitude</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>253</td>
</tr>
<tr>
<td>8.5</td>
<td>The Neumann expansion in the integral equation formulation of the scattering by a penetrable object</td>
<td>254</td>
</tr>
<tr>
<td>8.6</td>
<td>Far-field plane wave scattering in the first-order Rayleigh–Gans–Born approximation; time-domain analysis and complex frequency-domain analysis for canonical geometries of the scattering object</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>285</td>
</tr>
<tr>
<td>Part 2</td>
<td>Radiation and scattering of elastic waves in solids</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Introduction</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>291</td>
</tr>
<tr>
<td>10</td>
<td>Basic equations of the theory of elastic waves in solids</td>
<td>293</td>
</tr>
<tr>
<td>10.1</td>
<td>Number density, drift velocity, volume density of mass, and mass flow density of a collection of moving particles</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>300</td>
</tr>
<tr>
<td>10.2</td>
<td>Conservation of the number of particles and its consequences</td>
<td>302</td>
</tr>
<tr>
<td>10.3</td>
<td>The equation of motion</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>312</td>
</tr>
<tr>
<td>10.4</td>
<td>The deformation equation</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>315</td>
</tr>
<tr>
<td>10.5</td>
<td>The constitutive relations</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>321</td>
</tr>
<tr>
<td>10.6</td>
<td>The boundary conditions</td>
<td>322</td>
</tr>
<tr>
<td>10.7</td>
<td>Low-velocity linearisation; the equations of linear elastodynamics</td>
<td>325</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>329</td>
</tr>
<tr>
<td>10.8 Exchange of elastodynamic energy</td>
<td>330</td>
</tr>
<tr>
<td>Exercises</td>
<td>333</td>
</tr>
<tr>
<td>10.9 The frictional-force/viscosity elastodynamic loss mechanism</td>
<td>334</td>
</tr>
<tr>
<td>Exercises</td>
<td>336</td>
</tr>
<tr>
<td>10.10 Elastodynamic vector and tensor potentials in the theory of radiation from distributed sources</td>
<td>337</td>
</tr>
<tr>
<td>Exercises</td>
<td>339</td>
</tr>
<tr>
<td>10.11 Point-source solutions; Green's functions</td>
<td>340</td>
</tr>
<tr>
<td>Exercises</td>
<td>341</td>
</tr>
<tr>
<td>10.12 The elastodynamic wave equation for the particle velocity in a lossless solid</td>
<td>341</td>
</tr>
<tr>
<td>10.13 The equivalent fluid model for dilatational waves in a solid</td>
<td>343</td>
</tr>
<tr>
<td>Exercises</td>
<td>346</td>
</tr>
<tr>
<td>10.14 SI units of elastic wave quantities</td>
<td>347</td>
</tr>
<tr>
<td>References</td>
<td>348</td>
</tr>
<tr>
<td>11 The principle of superposition and its application to elastic wave fields in configurations with geometrical symmetry</td>
<td>349</td>
</tr>
<tr>
<td>11.1 The principle of superposition</td>
<td>349</td>
</tr>
<tr>
<td>11.2 Symmetry with respect to a plane</td>
<td>350</td>
</tr>
<tr>
<td>Exercises</td>
<td>356</td>
</tr>
<tr>
<td>11.3 Symmetry with respect to a line</td>
<td>356</td>
</tr>
<tr>
<td>Exercises</td>
<td>361</td>
</tr>
<tr>
<td>11.4 Symmetry with respect to a point</td>
<td>361</td>
</tr>
<tr>
<td>Exercises</td>
<td>365</td>
</tr>
<tr>
<td>12 The elastic wave equations, constitutive relations, and boundary conditions in the time Laplace-transform domain (complex frequency domain)</td>
<td>367</td>
</tr>
<tr>
<td>12.1 The complex frequency-domain elastic wave equations</td>
<td>368</td>
</tr>
<tr>
<td>Exercises</td>
<td>369</td>
</tr>
<tr>
<td>12.2 The complex frequency-domain constitutive relations; the Kramers–Kronig causality relations for a solid with relaxation</td>
<td>369</td>
</tr>
<tr>
<td>12.3 The complex frequency-domain boundary conditions</td>
<td>372</td>
</tr>
<tr>
<td>Exercises</td>
<td>373</td>
</tr>
<tr>
<td>12.4 The complex frequency-domain coupled elastic wave equations</td>
<td>373</td>
</tr>
<tr>
<td>12.5 Complex frequency-domain elastodynamic vector and tensor potentials</td>
<td>374</td>
</tr>
<tr>
<td>Exercises</td>
<td>376</td>
</tr>
<tr>
<td>12.6 Complex frequency-domain point-source solutions; complex frequency-domain Green's functions</td>
<td>376</td>
</tr>
<tr>
<td>Exercises</td>
<td>377</td>
</tr>
<tr>
<td>12.7 The complex frequency-domain elastic wave equations for dilatational waves (equivalent fluid model)</td>
<td>378</td>
</tr>
<tr>
<td>Exercises</td>
<td>380</td>
</tr>
<tr>
<td>References</td>
<td>380</td>
</tr>
</tbody>
</table>
13 Elastodynamic radiation from sources in an unbounded, homogeneous, isotropic solid

- **13.1** The coupled elastic wave equations in the angular wave-vector domain

- **13.2** The elastodynamic wave equation for the particle velocity and its solution in the angular wave-vector domain

- **13.3** Determination of G_P and G_S

- **13.4** The complex frequency-domain source-type integral representations for the particle velocity and the dynamic stress

- **13.5** The time-domain source-type integral representations for the particle velocity and the dynamic stress

- **13.6** Point-source solutions

- **13.7** Far-field radiation characteristics of extended sources (complex frequency-domain analysis)

- **13.8** Far-field radiation characteristics of extended sources (time-domain analysis)

- **13.9** The time evolution of an elastic wave field. The initial-value problem (Cauchy problem) for a homogeneous, isotropic, perfectly elastic solid

14 Plane elastic waves in homogeneous solids

- **14.1** Plane waves in the complex frequency domain

- **14.2** Plane waves in lossless solids; the slowness surface

- **14.3** Plane waves in the real frequency domain; attenuation vector and phase vector

- **14.4** Time-domain uniform plane waves in an isotropic, lossless solid

15 Elastodynamic reciprocity theorems and their applications

- **15.1** The nature of the reciprocity theorems and the scope of their consequences

- **15.2** The time-domain reciprocity theorem of the time convolution type

- **15.3** The time-domain reciprocity theorem of the time correlation type

- **15.4** The complex frequency-domain reciprocity theorem of the time convolution type
Contents

Exercises 449

15.5 The complex frequency-domain reciprocity theorem of the time correlation type 450
Exercises 453

15.6 Transmission/reception reciprocity properties of a pair of elastodynamic transducers 455
Exercises 458

15.7 Transmission/reception reciprocity properties of a single elastodynamic transducer 459

15.8 The direct (forward) source problem. Point-source solutions and Green’s functions 463
Exercises 471

15.9 The direct (forward) scattering problem 475

15.10 The inverse source problem 481

15.11 The inverse scattering problem 487

15.12 Elastic wave-field representations in a subdomain of the configuration space; equivalent surface sources; Huygens’ principle and the Ewald–Oseen extinction theorem 494
Exercises 501

References 503

16 Plane wave scattering by an object in an unbounded, homogeneous, isotropic, lossless embedding 505

16.1 The scattering configuration, the incident plane waves and the far-field scattering amplitudes 505
Exercises 516

16.2 Far-field scattered wave amplitudes reciprocity of the time convolution type 517
Exercises 533

16.3 Far-field scattered wave amplitudes reciprocity of the time correlation type 534

16.4 An energy theorem about the far-field forward scattered wave amplitudes 551
Exercises 559

16.5 The Neumann expansion in the integral equation formulation of the scattering by a penetrable object 560

16.6 Far-field plane wave scattering in the first-order Rayleigh–Gans–Born (1911) approximation; time-domain analysis and complex frequency-domain analysis for canonical geometries of the scattering object 565
Exercises 591

References 597

Part 3 Radiation and scattering of electromagnetic waves

17 Introduction 601

Exercises 604

References 604
18 The electromagnetic field equations 605
 18.1 Force exerted on an electric point charge 605
 Exercises 607
 18.2 The electromagnetic field equations in vacuum 608
 Exercises 609
 18.3 The electromagnetic field equations in matter 610
 Exercises 613
 18.4 The electromagnetic field equations for time-independent fields
 (quasi-static field equations) 613
 Exercises 614
 18.5 SI units of the electromagnetic field quantities 615
 References 616

19 The electromagnetic constitutive relations 617
 19.1 Conductivity, permittivity and permeability of an isotropic material . 618
 19.2 Conductivity, permittivity and permeability of an anisotropic material . 619
 19.3 Conductivity, permittivity and permeability of a material with relaxation . 620
 Exercises 621
 19.4 Electric current as a flow of electrically charged particles. The
 conservation of electric charge 622
 Exercises 629
 19.5 The conduction relaxation function of a metal 632
 Exercises 639
 19.6 The conduction relaxation function of an electron plasma 639
 Exercises 641
 19.7 The dielectric relaxation function of an isotropic dielectric 642
 Exercises 643
 19.8 SI units of the quantities associated with the electromagnetic constitutive
 behaviour of matter 644
 References 645

20 The electromagnetic boundary conditions 647
 20.1 Boundary conditions at the interface of two media 647
 Exercises 649
 20.2 Boundary condition at the surface of an electrically impenetrable object . 650
 Exercises 650
 20.3 Boundary condition at the surface of a magnetically impenetrable object . 651
 Exercises 651

21 Exchange of energy in the electromagnetic field 653
 21.1 Energy theorem for the electromagnetic field associated with the flow of a
 collection of electrically charged particles 653
 21.2 Energy theorem for the electromagnetic field in stationary matter 657
 21.3 Energy theorem for the electromagnetic field in a medium with
 conductivity, permittivity and permeability 661
Contents

26 Electromagnetic radiation from sources in an unbounded, homogeneous, isotropic medium 719

26.1 The electromagnetic field equations and their solution in the angular wave-vector domain .. 719
26.2 The Green’s function of the scalar Helmholtz equation 723
 Exercises 726
26.3 The complex frequency-domain source-type representations for the electric and the magnetic field strengths 726
 Exercises 729
26.4 The time-domain source-type representations for the electric and the magnetic field strengths in a lossless medium 730
 Exercises 733
26.5 The Green’s function of the dissipative scalar wave equation 734
 Exercises 740
26.6 Time-domain source-type integral representations for the electric and the magnetic field strengths in a medium with conductive electric and linear hysteresis magnetic losses .. 740
26.7 The Green’s function of the scalar wave equation associated with plasma oscillations and superconductivity 743
26.8 Time-domain source-type integral representations for the electric and the magnetic field strengths in an electron plasma or a superconducting metal 749
26.9 The electromagnetic field emitted by a short segment of a thin, conducting, current-carrying wire 752
26.10 The electromagnetic field emitted by small, conducting, current-carrying loop ... 757
 Exercises 762
26.11 Far-field radiation characteristics of extended sources (complex frequency-domain analysis) .. 762
 Exercises 765
26.12 Far-field radiation characteristics of extended sources (time-domain analysis for a lossless medium) 765
 Exercises 768
26.13 The time evolution of an electromagnetic wave field. The initial-value problem (Cauchy problem) for a homogeneous, isotropic, lossless medium 768
 Exercises 770
 References 771

27 Plane electromagnetic waves in homogeneous media 773

27.1 Plane waves in the complex frequency domain 773
 Exercises 778
27.2 Plane waves in lossless media; the slowness surface 780
 Exercises 782
27.3 Plane waves in the real frequency domain; attenuation vector and phase vector ... 782
 Exercises 800
27.4 Time-domain uniform plane waves in an isotropic, lossless medium 802
Contents

Exercises .. 805

28 Electromagnetic reciprocity theorems and their applications 807

28.1 The nature of the reciprocity theorems and the scope of their consequences .. 807
Exercises ... 814

28.2 The time-domain reciprocity theorem of the time convolution type ... 814
Exercises ... 817

28.3 The time-domain reciprocity theorem of the time correlation type ... 818
Exercises ... 822

28.4 The complex frequency-domain reciprocity theorem of the time convolution type 822
Exercises ... 826

28.5 The complex frequency-domain reciprocity theorem of the time correlation type 827
Exercises ... 830

28.6 Transmission/reception reciprocity properties of a pair of electromagnetic antennas 832
Exercises ... 836

28.7 Transmission/reception reciprocity properties of a single electromagnetic antenna 837

28.8 The direct (forward) source problem. Point-source solutions and Green’s functions 840
Exercises ... 848

28.9 The direct (forward) scattering problem 851

28.10 The inverse source problem 857

28.11 The inverse scattering problem 863

28.12 Electromagnetic wave-field representations in a subdomain of the configuration space; equivalent surface sources; Huygens’ principle and the Ewald–Oseen extinction theorem 870
Exercises ... 877

References ... 878

29 Plane wave scattering by an object in an unbounded, homogeneous, isotropic, lossless embedding 879

29.1 The scattering configuration, the incident plane wave and the far-field scattering amplitudes 879
Exercises ... 887

29.2 Far-field scattered wave amplitude reciprocity of the time convolution type 888
Exercises ... 896

29.3 Far-field scattered wave amplitude reciprocity of the time correlation type 897
Exercises ... 906

29.4 An energy theorem about the far-field forward scattered wave amplitude 906
Exercises ... 910
29.5 The Neumann expansion in the integral equation formulation of the scattering by a penetrable object .. 911
29.6 Far-field plane wave scattering in the first-order Rayleigh–Gans–Born approximation; time-domain analysis and complex frequency-domain analysis for canonical geometries of the scattering object 915
Exercises .. 935
References 941

30 Interference and shielding of electromagnetic systems accessible via low-frequency terminations. ElectroMagnetic Compatibility (EMC) 943

30.1 The reciprocity surface interaction integral for a low-frequency multiport system .. 943
Exercises .. 945
30.2 The electromagnetic N-port system as a transmitting system (electromagnetic emission analysis) .. 947
Exercises .. 949
30.3 The electromagnetic N-port system as a receiving system (electromagnetic susceptibility analysis) 950
Exercises .. 957
30.4 Remote interaction between an M-port system and an N-port system .. 959
Exercises .. 963
30.5 Electromagnetic interference .. 967
Exercises .. 975
30.6 The shielding effectiveness of a spherical shield for a radiating electric dipole placed at its centre (complex frequency-domain analysis) .. 979
30.7 The shielding effectiveness of a spherical shield for a radiating magnetic dipole placed at its centre (complex frequency-domain analysis) .. 984
References 988

Appendices

Appendix A Cartesian tensors and their properties .. 991

A.1 Introduction .. 991
A.2 The summation convention .. 992
Exercises .. 992
A.3 Cartesian reference frames in affine space and in Euclidean space .. 993
Exercises .. 999
A.4 Definition of a Cartesian tensor .. 1001
Exercises .. 1003
A.5 Addition, subtraction and multiplication of tensors .. 1003
Exercises .. 1006
A.6 Symmetry properties .. 1008
Exercises .. 1009
A.7 Unit tensors .. 1010
Contents

A.8 Differentiation of a tensor 1019
Exercises .. 1022
A.9 Geometrical objects of a particular shape in N-dimensional Euclidean space 1023
Exercises .. 1031
A.10 Integration of a tensor 1032
Exercises .. 1042
A.11 The Taylor expansion 1043
Exercises .. 1044
A.12 Gauss' integral theorem 1045
Exercises .. 1046

Appendix B Integral-transformation methods ... 1049

B.1 Laplace transformation of a causal time function 1049
Exercises .. 1057
B.2 Spatial Fourier transformation 1060
Exercises .. 1064
B.3 The Kramers–Kronig causality relations 1065
Exercises .. 1070
B.4 Fourier series and Poisson's summation formula 1071
Exercises .. 1073
References 1074

Index ... 1075